EVISA Print | Glossary on | Contact EVISA | Sitemap | Home   
 Advanced search
The establishment of EVISA is funded by the EU through the Fifth Framework Programme (G7RT- CT- 2002- 05112).


Supporters of EVISA includes:

Chromium Isotope Ratio as a Tool to Track the Redox State of the Earth

(17.03.2019)


Background:
The reconstruction of redox conditions in ancient oceans is a major challenge in Earth systems science. Redox conditions, commonly described in terms of the abundance of molecular oxygen relative to dissolved sulphide, are controlled by weathering reactions, volcanic emissions, biological processes, and ocean mixing. Therefore, redox reconstructions over geological timescales trace the evolution of oceanic and atmospheric chemistry and of the connections between the biosphere, hydrosphere, and geosphere. Earth’s redox state (the oxidation of the planet’s atmosphere and ocean) has played an important role in the evolution of life and, ultimately, Earth’s habitability. Therefore, understanding redox over various timescales throughout our planet’s history is an important step in determining how the Earth came to support the diversity of life we see today.

Isotopes of redox-sensitive metals have provided key information about past redox conditions at the Earth’s surface. Cr also has the potential to provide constraints on redox conditions in the oceans and atmosphere because Cr isotopes are fractionated during redox reactions,  and a number of recent studies have attempted to use this system to trace changes in the level of O2 in the atmosphere in the Archaean and Neoproterozoic. The simplest application of Cr isotopes as a paleoredox proxy relies on the basic idea that variability of δ53Cr in sedimentary rocks requires mobile Cr(VI) on Earth’s surface and that the oxidation of Cr(III) to Cr(VI), via Mn oxides, requires free oxygen.

The use of Cr isotopes as a redox proxy is limited for now because scientists haven’t built up a clear understanding of the global mass balance of Cr isotopes. Many geological reservoirs and isotope fractionation processes are still not well understood.

Photo:
Satellite image of the Connecticut River depositing silt into Long Island Sound (NASA Earth Observatory, Public domain)

The new study:
One environment in which this mass balance is little-understood is in estuaries. The new study now addresses this gap in knowledge by focusing on the Connecticut River estuary, collecting samples over a gradient from fresh to salty water. The study provides the first Cr isotope dataset for this type of environment. The team of scientists examined Cr-containing particulates in the water as well as dissolved Cr. Their results suggest that particles lose Cr as salinity increases, a finding that could have implications for interpreting Cr isotope data from the sedimentary rock record of the Earth. The authors conclude that interpreting δ53Cr in the sedimentary record requires taking multiple processes into consideration.

The work was supported by NASA Astrobiology through the Exobiology Program.



The cited study:

Zeyang Sun, Xiang-li Wang, Noah Planavsky, Cr isotope systematics in the Connecticut River estuary, Chem. Geol., 506 (2019) 29-39. DOI: 10.1016/j.chemgeo.2018.12.034


Used techniques and instrumentation:



Related studies (newest first):

Simone B. Moos, Edward A. Boyle, Determination of accurate and precise chromium isotope ratios in seawater samples by MC-ICP-MS illustrated by analysis of SAFe Station in the North Pacific Ocean, Chem. Geol., 2018. DOI: 10.1016/j.chemgeo.2018.07.027

M.G. Babechuk, I.C. Kleinhanns, E. Reitter, R. Schoenberg, Kinetic stable Cr isotopic fractionation between aqueous Cr (III)-Cl-H2O complexes at 25 °C: implications for Cr (III) mobility and isotopic variations in modern and ancient natural, systems. Geochim. Cosmochim. Acta 222 (2018) 383–405. DOI: 10.1016/j.gca.2017.10.002

Juraj Farkaš, Jirí Frýdad, Cora Paulukat, Ed C. Hathorne, Šarka Matoušková, Jan Rohovec, Barbora Frýdová, Michaela Francová, Robert Frei, Chromium isotope fractionation between modern seawater and biogenic carbonates from the Great Barrier Reef, Australia: Implications for the paleo-seawater δ53Cr reconstruction, Earth Planet. Sci. Lett., 498 (2018) 140–151. DOI: 10.1016/j.epsl.2018.06.032

D.E. Canfield, S. Zhang, A.B. Frank, X. Wang, H. Wang, J. Su, Y. Ye, R. Frei, Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nat. Commun. 9 (2018) 2871. DOI: 10.1038/s41467-018-05263-9

D.B. Cole, S. Zhang, N.J. Planavsky, A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments. Geochim. Cosmochim. Acta 215 (2017) 337–353. DOI: 10.1016/j.gca.2017.08.004

X.L. Wang, N.J. Planavsky, P.M. Hull, A.E. Tripati, H.J. Zou, L. Elder, M. Henehan, Chromium isotopic composition of core-top planktonic foraminifera, Geobiol., 15/1 (2017) 51-64. DOI: 10.1111/gbi.12198

Weihua Wu, Xiangli Wang, Christopher T. Reinhard, Noah J. Planavsky, Chromium isotope systematics in the Connecticut River, Chem. Geol., 456 (2017) 98-111. DOI: 10.1016/j.chemgeo.2017.03.009

E.M. Saad, X. Wang, N.J. Planavsky, C.T. Reinhard, Y. Tang, Redox-independent chromium isotope fractionation induced by ligand-promoted dissolution. Nat. Commun. 8 (2017) 1590. DOI: 10.1038/s41467-017-01694-y

J. D'Arcy, N.G. Babechuk, L.N. Dřssing, C. Gaucher, R. Frei, Processes controlling the chromium isotopic composition of river water: constrains from basaltic river catchments. Geochim. Cosmochim. Acta, 186 (2016) 296–315. DOI: 10.1016/j.gca.2016.04.027

Cora Paulukat, Geoffrey J. Gilleaudeau, Pavel Chernyavskiy, Robert Frei, The Cr-isotope signature of surface seawater — A global perspective, Chem. Geol., 444 (2016) 101-109. DOI: 10.1016/j.chemgeo.2016.10.004

Xiangli Wang, Noah J. Planavsky, Christopher T. Reinhard, Huijuan Zou, Jay J. Ague, Yuanbao Wu, Benjamin C. Gill, Esther M. Schwarzenbach, Bernhard Peucker-Ehrenbrink, Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration, Chem. Geol., 423 (2016) 19-33. DOI: 10.1016/j.chemgeo.2016.01.003

D.B. Cole, C.T. Reinhard, X. Wang, B. Gueguen, G.P. Halverson, T. Gibson, M.S. Hodgskiss, N.R. McKenzie, T.W. Lyons, N.J. Planavsky, A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44 (2016) 555-558. DOI: 10.1130/G37787.1

David M.Semeniuk, Maria T. Maldonado, Samuel L. Jaccard, Chromium uptake and adsorption in marine phytoplankton – Implications for the marine chromium cycle, Geochim. Cosmochim. Acta, 184 (2016) 41-54. DOI: 10.1016/j.gca.2016.04.021

David M.Semeniuk, Maria T. Maldonado, Samuel L. Jaccard, Chromium uptake and adsorption in marine phytoplankton – Implications for the marine chromium cycle, Geochim. Cosmochim. Acta, 184 (2016) 41-54. DOI: 10.1016/j.gca.2016.04.021

Bleuenn Gueguen, Christopher T. Reinhard, Thomas J. Algeo, The chromium isotope composition of reducing and oxic marine sediments, Geochim. Cosmochim. Acta, 184 (2016) 1-19. DOI: 10.1016/j.gca.2016.04.004

Xiangli Wang, Christopher T. Reinhard, Noah J. Planavsky, Jeremy D. Owens, Timothy W. Lyons, Thomas M. Johnson, Sedimentary chromium isotopic compositions across the Cretaceous OAE2 at Demerara Rise Site 1258, Chem. Geol., 429 (2016) 85–92. DOI: 10.1016/j.chemgeo.2016.03.006

X.L. Wang, N.J. Planavsky, C.T. Reinhard, H. Zou, J.J. Ague, Y. Wu, B.C. Gill, E.M. Schwarzenbach, B. Peucker-Ehrenbrink, Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration. Chem. Geol., 429 (2016) 19–33. DOI: 10.1016/j.chemgeo.2016.01.003

X.L. Wang, T.M. Johnson, A.S. Ellis, Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr (III) and Cr (VI). Geochim. Cosmochim. Acta, 153 (2015) 72–90. DOI: 10.1016/j.gca.2015.01.003

A. Rodler, N. Sánchez-Pastor, L. Fernández-Díaz, R. Frei, Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate: Implications for their use as paleoclimatic proxy, Geochim. Cosmochim. Acta, 164 (2015) 221-235. DOI: 10.1016/j.gca.2015.05.021

Andri Stefánsson, Ingvi Gunnarsson, Hanna Kaasalainen, Stefán Arnórsson, Chromium geochemistry and speciation in natural waters, Iceland, Appl. Geochem., 62 (2015) 200-206. DOI: 10.1016/j.apgeochem.2014.07.007

K. Scheiderich, M. Amini, C. Holmden, R. Francois, Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples. Earth Planet. Sci. Lett., 423 (2015) 87–97. DOI: 10.1016/j.epsl.2015.04.030

J. Shen, J. Liu, L. Qin, S.J. Wang, S. Li, J. Xia, S. Ke, J. Yang, Chromium isotope signature during continental crust subduction recorded in metamorphic rocks. Geochem. Geophys. Geosyst., 16 (2015) 3840-3854. DOI: 10.1002/2015GC005944.

C.T. Reinhard, N.J. Planavsky, X. Wang, W.W. Fischer, T.M. Johnson, T.W. Lyons, The isotopic composition of authigenic chromium in anoxic marine sediments: a case study from the Cariaco Basin. Earth Planet. Sci. Lett. 407 (2014) 9–18. DOI: 10.1016/j.epsl.2014.09.024

  P. Bonnand , R.H. James, I.J. Parkinson, D.P. Connelly, I.J. Fairchild, The chromium isotopic composition of seawater and marine carbonates, Earth Planet. Sci. Lett., 382 (2013) 10–20. DOI: 10.1016/j.epsl.2013.09.001

  J. Farkaš, V. Chrastny, M. Novak, E. Cadkova, J. Pasava, R. Chakrabarti, S.B. Jacobsen, L. Ackerman, T.D. Bullen, Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of δ53/52Cr in the Earth's mantle over geologic time. Geochim. Cosmochim. Acta, 123 (2013) 74–92. DOI: 10.1016/j.gca.2013.08.016

Anirban Basu, Thomas M. Johnson, Determination of Hexavalent Chromium Reduction Using Cr Stable Isotopes: Isotopic Fractionation Factors for Permeable Reactive Barrier Materials, Environ. Sci. Technol., 46/10 (2012) 5353–5360. DOI: 10.1021/es204086y

R. Frei, C. Gaucher, L.N. Dřssing, A.N. Sial, Chromium isotopes in carbonates — A tracer for climate change and for reconstructing the redox state of ancient seawater, Earth Planet. Sci. Lett., 312/1–2 (2011) 114-125. DOI: 10.1016/j.epsl.2011.10.009 

P. Bonnand, I.J. Parkinson, R.H. James, A.-M. Karjalainen, M.A. Fehr, Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS. J. Anal. At. Spectrom., 26 (2011) 528–535. DOI: 10.1039/c0ja00167h

L.N. Dřssing, K. Dideriksen, S.L.S. Stipp, R. Frei, Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments, Chem. Geol., 285 (2011) 157-166. DOI: 10.1016/j.chemgeo.2011.04.005

R. Schoenberg, S. Zink, M. Staubwasser, F. von Blanckenburg, The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS, Chem. Geol., 249 (2008) 294–306. DOI: 10.1016/j.chemgeo.2008.01.009

D.P. Connelly, P.J. Statham, A.H. Knap, Seasonal changes in speciation of dissolved chromium in the surface Sargasso Sea. Deep-Sea Res. I Oceanogr. Res. Pap. 53 (2006) 1975–1988. DOI: 10.1016/j.dsr.2006.09.005

E. Schauble, G.R. Rossman, H.P. Taylor Jr., Theoretical estimates of equilibrium chromium-isotope fractionations, Chem. Geol., 205 (2004) 99–114. DOI: 10.1016/j.chemgeo.2003.12.015

A.S. Ellis, T.M. Johnson, T.D. Bullen, Using chromium stable isotope ratios to quantify Cr (VI) reduction: lack of sorption effects. Environ. Sci. Technol., 38 (2004) 3604–3607. DOI: 10.1021/es0352294

Andre S. Ellis, Thomas M. Johnson, Thomas D. Bullen, Chromium Isotopes and the Fate of Hexavalent Chromium in the Environment, Science,295/5562 (2002) 2060-2062. DOI: 10.1126/science.1068368

K. Barbeau, KE.L. Rue, K.W. Bruland, A. Butler, Photochemical cycling of iron in the surface ocean mediated by microbial iron (III)-binding ligands. Nature, 413 (2001) 409–413. DOI: 10.1038/35096545

Monica Rotaru, Jean Louis Birck & Claude J. Allčgre, Clues to early Solar System history from chromium isotopes in carbonaceous chondrites, Nature, 358 (1992) 465-470: DOI: 10.1038/358465a0

L. Edmond Eary, Dhanpat Rai, Kinetics of chromium(III) oxidation by reaction with manganese dioxide, Environ. Sci. Technol., 21 (1987) 1187-1193. DOI: 10.1021/es00165a005

W.S. Broecker, T. Peng, Tracers in the Sea, Columbia University (1982). available from: https://www.ldeo.columbia.edu/~broecker/Home_files/TracersInTheSea_searchable.pdf

R. Cranston, J. Murray, Chromium species in the Columbia River and estuary, Limnol. Oceanogr. 25 (1980) 1104–1112. DOI: 10.4319/lo.1980.25.6.1104

R. Cranston, J. Murray, The determination of chromium species in natural waters. Anal. Chim. Acta, 99 (1978) 275-282. DOI: 10.1016/S0003-2670(01)83568-6

H. Elderfield, Chromium speciation in sea water, Earth Planet. Sci. Lett., 9 (1970) 10-16. DOI: 10.1016/0012-821X(70)90017-8




Related EVISA Resources




last time modified: September 22, 2024



Comments






Imprint     Disclaimer

© 2003 - 2024 by European Virtual Institute for Speciation Analysis ( EVISA )