In a new study published this month in the Proceedings of the National Academy of Sciences, MIT researchers report that global action on reducing mercury emissions will lead to twice the economic benefits for the U.S., compared with domestic action, by 2050. However, those in the U.S. who consume locally caught freshwater fish, rather than seafood from the global market, will benefit more from domestic rather than international mercury regulations.
Overall, while both policies are projected to lead to roughly the same amount of reductions in mercury deposited on U.S. soil compared to a no-policy case, Americans' intake of mercury by 2050 are estimated to be 91 percent lower under the global treaty, compared to 32 percent under U.S. policy alone. The researchers say these numbers reflect the U.S. commercial fish market, 90 percent of which is sourced from Pacific and Atlantic Ocean basins -- regions that are heavily influenced by emissions from non-U.S. sources, including China.
Based on these calculations, the team estimated that by 2050, emissions reductions under the Minamata Convention on Mercury would lead to $339 billion in lifetime benefits and $104 billion in economy-wide benefits in the U.S., compared to $147 billion and $43 billion, respectively, from MATS. The global treaty, then, should lead to more than twice the benefits projected from the domestic policy.
Another study from the US suggests that the benefits of existing pollution controls in the US may be underestimated, since these provide a substantial side benefit. The authors concluded that mercury emission from coal-fired power plants have been reduced as a co-benefit from controls designed to limit sulfur and nitrogen emissions. The reaction that controls nitrogen oxide emissions also oxidizes mercury, while the controls that target sulfur emissions also remove oxidized mercury from the exhaust stream.
The sulfur controls appear to be key to the global trends. China went from having essentially none to having them installed on 86 percent of its coal plants in less than a decade. This meant that mercury emissions probably grew at half the rate of the increase in coal use. Japan more than doubled the plants with these controls over a 15-year period (to 70 percent); Europe's use of the technology increased at a similar pace.
Overall, the authors estimate that emissions of elemental mercurythe form that stays in the atmosphere for long time and therefore spreads globallyhas declined by 30 percent over the 20 years ending in 2010. Globally, the emissions of oxidized mercury are up, but only by about nine percent. Since that doesn't spread widely, this increase will primarily impact the countries where coal use has gone up, such as India and China.
And what about Europe ?
According to a study by the Institute for Ecology and Politics (Ökopol) commissioned by the Green Party fraction represented in the German Parliament, Germany is under the top pollutants with respect to mercury emissions in Europe. The study says that coal-fired power plants, which are still responsible for 40 percent of Germany's electricity supply, emit more than 7 tons of mercury each year. The 16 lignite or brown coal plants in Germany are especially bad offenders. Using the the state-of-the art technology already in use in the US, "85 percent of mercury emissions could have been prevented", Christian Tebert, the author of the Ökopol study, wrote. While stricter rules are planned for 2019, Germany's limits would still be more than double those in the US.
Amanda Giang, and Noelle E. Selin,
, Proc. Nat. Acad. Sci., 113/2 (2016) 286-291.
Yanxu Zhang, Daniel J. Jacob, Hannah M. Horowitz, Long Chen, Helen M. Amos, David P. Krabbenhoft, Franz Slemr, Vincent L. St. Louis, and Elsie M. Sunderland,
, Proc. Nat. Acad. Sci., 113/3 (2016) 526-531.
, Ökopol report, 21. Dezember 2015 vailable from:
Amanda Giang, Leah C. Stokes, David G. Streets, Elizabeth S. Corbitt, Noelle E. Selin,
Impacts of the Minamata Convention on Mercury Emissions and Global Deposition from Coal-Fired Power Generation in Asia, Environ. Sci. Technol, 49 (2015) 5326-5335.
DOI: 10.1021/acs.est.5b00074 Rebecca K. Saari, Noelle E. Selin, Sebastian Rausch,Tammy M. Thompson,
A self-consistent method to assess air quality cobenefits from U.S. climate policies, J. Air & Waste Manage. Assoc., 65/1 (2015) 74-89,
DOI: 10.1080/10962247.2014.959139 Kyrre Sundseth, Jozef M. Pacyna, Anna Banel, Elisabeth G. Pacyna, Arja Rautio,
Climate Change Impacts on Environmental and Human Exposure to Mercury in the Arctic, Int. J. Environ. Res. Public Health, 12/4 (2015) 3579-3599.
doi:10.3390/ijerph120403579
Helen M. Amos, Jeroen E. Sonke, Daniel Obrist, Nicholas Robins, Nicole Hagan, Hannah M. Horowitz, Robert P. Mason, Melanie Witt, Ian M. Hedgecock, Elizabeth S. Corbitt, Elsie M. Sunderland,
Observational and Modeling Constraints on Global Anthropogenic Enrichment of Mercury, Environ. Sci. Technol., 49/7 (2015) 40364047.
DOI: 10.1021/es5058665 Jianping Xue, Valerie Zartarian, Bruce Mintz, Marc Weber, Ken Bailey, Andrew Geller,
Modeling tribal exposures to methyl mercury from fish consumption, Sci. Total Environ., 533 (2015) 102109.
DOI: 10.1016/j.scitotenv.2015.06.070 Amanda Giang, Leah C. Stokes, David G. Streets, Elizabeth S. Corbitt, Noelle E. Selin,
Impacts of the Minamata Convention on Mercury Emissions and Global Deposition from Coal-Fired Power Generation in Asia, Environ. Sci. Technol., 2015, 49/9 (2015) 53265335.
DOI: 10.1021/acs.est.5b00074 N.E. Selin,
Global change and mercury cycling: Challenges for implementing a global mercury treaty, Environ. Toxicol. Chem., 33/6 (2014) 12021210.
DOI: 10.1002/etc.2374 Helen M. Amos, Daniel J. Jacob, David Kocman, Hannah M. Horowitz, Yanxu Zhang, Stephanie Dutkiewicz,
Milena Horvat, Elizabeth S. Corbitt, David P. Krabbenhoft, Elsie M. Sunderland,
Global Biogeochemical Implications of Mercury Discharges from Rivers and Sediment Burial, Environ. Sci. Technol., 48 (2014) 9514-9522.
DOI: 10.1021/es502134t Daniel A. Jaffe, Seth Lyman, Helen M. Amos, Mae S. Gustin, Jiaoyan Huang, Noelle E. Selin, Leonard Levin, Arnout ter Schure, Robert P. Mason, Robert Talbot, Andrew Rutter, Brandon Finley, Lyatt Jaeglé, Viral Shah, Crystal McClure, Jesse Ambrose, Lynne Gratz, Steven Lindberg, Peter Weiss-Penzias, Guey-Rong Sheu, Dara Feddersen,
Milena Horvat, Ashu Dastoor, Anthony J. Hynes, Huiting Mao, Jeroen E. Sonke, Franz Slemr, Jenny A. Fisher, Ralf Ebinghaus, Yanxu Zhang, Grant Edwards,
Progress on Understanding Atmospheric Mercury Hampered by Uncertain Measurements, Environ. Sci. Technol., 48/13 (2014) 72047206.
DOI: 10.1021/es5026432 Matthew S. Landis, Jeffrey V. Ryan, Arnout F. H. ter Schure, Dennis Laudal,
Behavior of Mercury Emissions from a Commercial Coal-Fired Power Plant: The Relationship between Stack Speciation and Near-Field Plume Measurements, Environ. Sci. Technol., 48 (2014) 13540-13548.
DOI: 10.1021/es500783t H. Selin,
Global Environmental Law and Treaty-Making on Hazardous Substances: The Minamata Convention and Mercury Abatement, Glob. Environ. Politics, 14/1 (2014) 119.
DOI: 10.1162/GLEP_a_00208 Carl H. Lamborg, Chad R. Hammerschmidt, Katlin L. Bowman, Gretchen J. Swarr, Kathleen M. Munson, Daniel C. Ohnemus, Phoebe J. Lam, Lars-Eric Heimbürger, Micha J. A. Rijkenberg, Mak A. Saito,
A global ocean inventory of anthropogenic mercury based on water column measurements, Nature, 512 (2014) 65-68.
DOI: 10.1038/nature13563 Krish Vijayaraghavan, Leonard Levin, Lynsey Parker, Greg Yarwood, David Streets,
Response of fish tissue mercury in a freshwater lake to local, regional, and global changes in mercury emissions, Environ. Toxicol. Chem., 33/6 (2014) 12381247.
DOI: 10.1002/etc.2584 C. Lamborg, K. Bowman, C. Hammerschmidt, C. Gilmour, K. Munson, N. Selin, C.-M. Tseng,
Mercury in the anthropocene ocean, Oceanography 27/1 (2014) 7687.
DOI: 10.5670/oceanog.2014.11 Mary C Sheehan, Thomas A Burke, Ana Navas-Acien, Patrick N Breysse, John McGready, Mary A Fox,
Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review, Bull. WHO, 92 (2014) 254-269f.
DOI: 10.2471/BLT.12.116152 Yindong Tong, Terry Eichhorst, Michael R. Olson, Andrew P. Rutter, Martin M. Shafer, Xuejun Wang, James J. Schauer,
Comparison of heterogeneous photolytic reduction of Hg(II) in the coal fly ashes and synthetic aerosols, Atmos. Res., 138 (2014) 324329.
DOI: 10.1016/j.atmosres.2013.11.015 Martine Bellanger, Céline Pichery, Dominique Aerts, Marika Berglund, Argelia Castańo, Mája Cejchanová, Pierre Crettaz, Fred Davidson, Marta Esteban, Marc E Fischer, Anca Elena Gurzau, Katarina Halzlova, Andromachi Katsonouri, Lisbeth E Knudsen, Marike Kolossa-Gehring, Gudrun Koppen, Danuta Ligocka, Ana Miklavcic, M Fátima Reis, Peter Rudnai, Janja Snoj Tratnik, Pál Weihe, Esben Budtz-Jřrgensen, Philippe Grandjean, DEMO/COPHES,
Economic benefits of methylmercury exposure control in Europe: Monetary value of neurotoxicity prevention, Environ. Health, 12 (2013) 3.
DOI: 10.1186/1476-069X-12-3 H.M. Amos, D.J. Jacob, D.G. Streets, E.M. Sunderland,
Legacy impacts of all-time anthropogenic emissions on the global mercury cycle, Global Biogeochem. Cycles, 27/2 (2013) 410421.
DOI: 10.1002/gbc.20040 Ray W. Drenner, Matthew M. Chumchal, Christina M. Jones, Christopher M. B. Lehmann, David A. Gay, David I. Donato,
Effects of Mercury Deposition and Coniferous Forests on the Mercury Contamination of Fish in the South Central United States, Environ. Sci. Technol., 47/3 (2013) 12741279.
DOI: 10.1021/es303734n C.T. Driscoll, R.P. Mason, H.M. Chan, D.J. Jacob, N. Pirrone,
Mercury as a global pollutant: Sources, pathways, and effects, Environ. Sci. Technol., 47/10 (2013) 49674983.
DOI: 10.1021/es305071v Heileen Hsu-Kim, Katarzyna H. Kucharzyk, Tong Zhang, and Marc A. Deshusses,
Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review, Environ. Sci. Technol., 2013, 47/6 (2013) 24412456.
DOI: 10.1021/es304370g H.M. Amos, D.J. Jacob, C.D. Holmes, J.A. Fisher, Q. Wang, R.M. Yantosca, E.S. Corbitt, E. Galarneau, A.P. Rutter, M.S. Gustin, A. Steffen, J.J. Schauer, J.A. Graydon, V.L. St. Louis, R.W. Talbot, E.S. Edgerton, Y. Zhang, E.M. Sunderland,
Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem. Phys., 12 (2012) 591603.
DOI:10.5194/acp-12-591-2012 Y. Zhang, L. Jaeglé, A. van Donkelaar, R.V. Martin, C.D. Holmes, H.M. Amos, Q. Wang, R. Talbot, R. Artz, S. Brooks, W. Luke, T.M. Holsen, D. Felton, E.K. Miller, K.D. Perry, D. Schmeltz, A. Steffen, R. Tordon, P. Weiss-Penzias, R. Zsolway,
Nested-grid simulation of mercury over North America, Atmos. Chem. Phys., 12 (2012) 6095-6111.
doi: 10.5194/acp-12-6095-2012 Robert P. Mason, Anna L.Choi, William F. Fitzgerald, Chad R. Hammerschmidt, Carl H.Lamborg, Anne L. Soerensen, Elsie M. Sunderland,
Mercury biogeochemical cycling in the ocean and policy implications, Environ. Res., 119 (2012) 101117.
DOI: 10.1016/j.envres.2012.03.013 C.Y. Chen, C.T. Driscoll, K.F. Lambert, R.P. Mason, L.R. Rardin, C.V. Schmitt, N.S. Serrell, E.M. Sunderland,
Sources to Seafood: Mercury Pollution in the Marine Environment, Hanover, NH: Toxic Metals Superfund Research Program, Dartmouth College, 2012. Available from:
http://www.dartmouth.edu/~toxmetal/assets/pdf/sources_to_seafood_report.pdf Paul E. Drevnick, Daniel R. Engstrom, Charles T. Driscoll, Edward B. Swain, Steven J. Balogh, Neil C. Kamman, David T. Long, Derek G.C. Muir, Matthew J. Parsons, Kristofer R. Rolfhus, Ronald Rossmann,
Spatial and temporal patterns of mercury accumulation in lacustrine sediments across the Laurentian Great Lakes region, Environ. Pollut., 161 (2012) 252-260.
DOI: 10.1016/j.envpol.2011.05.025 Roxanne Karimi, Timothy P. Fitzgerald, Nicholas S. Fisher,
A Quantitative Synthesis of Mercury in Commercial Seafood and Implications for Exposure in the United States, Environ. Health Perspect., 120/11 (2012) 1512-1519.
DOI: 10.1289/ehp.1205122 Mahamud Subir, Parisa A. Ariya, Ashu P. Dastoor,
A review of the sources of uncertainties in atmospheric mercury modeling II. Mercury surface and heterogeneous chemistry A missing link, Atmospheric Environ., 46 (2012) 110.
DOI: 10.1016/j.atmosenv.2011.07.047 Margaret R. Karagas, Anna L. Choi, Emily Oken,
Milena Horvat, Rita Schoeny, Elizabeth Kamai, Whitney Cowell, Philippe Grandjean, Susan Korrick,
Evidence on the Human Health Effects of Low-Level Methylmercury Exposure, Environ. Health Perspect., 120/6 (2012) 799-806.
DOI:10.1289/ehp.1104494 Henry A. Roman, Tyra L. Walsh, Brent A. Coull, Éric Dewailly, Eliseo Guallar, Dale Hattis, Koenraad Mariën, Joel Schwartz, Alan H. Stern, Jyrki K. Virtanen, Glenn Rice,
Evaluation of the Cardiovascular Effects of Methylmercury Exposures: Current Evidence Supports Development of a DoseResponse Function for Regulatory Benefits Analysis, Environ Health Perspect 119:607614 (2011).
DOI: 10.1289/ehp.1003012 Elizabeth S. Corbitt, Daniel J. Jacob, Christopher D. Holmes, David G. Streets, and Elsie M. Sunderland,
Global SourceReceptor Relationships for Mercury Deposition Under Present-Day and 2050 Emissions Scenarios, Environ. Sci. Technol., 45/24 (2011) 1047710484.
DOI: 10.1021/es202496y
David C. Evers, James G. Wiener, Niladri Basu, R.A. Bodaly, Heather A. Morrison, Kathryn A. Williams,
Mercury in the Great Lakes region: bioaccumulation, spatiotemporal patterns, ecological risks, and policy, Ecotoxicology, 20 (2011) 14871499.
DOI: 10.1007/s10646-011-0784-0 G.E. Rice, J.K. Hammitt, J.S. Evans,
A probabilistic characterization of the health benefits of reducing methyl mercury intake in the United States, Environ. Sci. Technol., 44/13 (2010) 52165224.
DOI: 10.1021/es903359u Anne L. Soerensen, Elsie M. Sunderland, Christopher D. Holmes, Daniel J. Jacob, Robert M. Yantosca, Henrik Skov, Jesper H. Christensen, Sarah A. Strode, Robert P. Mason,
An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic, Environ. Sci. Technol., 44/22 (2010) 85748580.
DOI: 10.1021/es102032g
P. Grandjean, H. Satoh, K. Murata, K. Eto,
Adverse effects of methylmercury: Environmental health research implications, Environ. Health Perspect., 118/8 (2010) 11371145.
DOI: 10.1289/ehp.0901757 C.D. Holmes, D.J. Jacob, E.S. Corbitt, J. Mao, X. Yang, R. Talbot, F. Slemr,
Global atmospheric model for mercury including oxidation by bromine atoms, Atmos. Chem. Phys., 10 (2010) 1203712057.
DOI: 10.5194/acp-10-12037-2010 N.E. Selin, E.M. Sunderland, C.D. Knightes, R.P. Mason,
Sources of mercury exposure for U.S. seafood consumers: Implications for policy, Environ. Health Perspect., 118/1 (2010) 137143.
DOI: 10.1289/ehp.0900811 D.G. Streets, Q. Zhang, Y. Wu,
Projections of global mercury emissions in 2050, Environ Sci Technol 43/8 (2009) 29832988.
DOI: 10.1021/es802474j C.D. Knightes, E.M. Sunderland, M. Craig Barber, J.M. Johnston, R.B.J. Ambrose,
Application of ecosystem-scale fate and bioaccumulation models to predict fish mercury response times to changes in atmospheric deposition, Environ. Toxicol. Chem., 28/4 (2009) 881893.
DOI: 10.1897/08-242R.1 K.R. Mahaffey, R.P. Clickner, R.A. Jeffries,
Adult womens blood mercury concentrations vary regionally in the United States: Association with patterns of fish consumption (NHANES 1999-2004), Environ. Health Perspect., 117/1 (2009) 4753.
DOI: 10.1289/ehp.11674 Noelle E. Selin, Daniel J. Jacob, Robert M. Yantosca, Sarah Strode, Lyatt Jaeglé, Elsie M. Sunderland,
Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition, Global Biogeochem. Cycles, 22 (2008) GB2011,
DOI: 10.1029/2007GB003040 Joseph V. Spadaro, Ari Rabl,
Global Health Impacts and Costs Due to Mercury Emissions, Risk Anal., 28/3 (2008) 603-613.
DOI: 10.1111/j.1539-6924.2008.01041.x C. Griffiths, A. McGartland, M. Miller,
A comparison of the monetized impact of IQ decrements from mercury emissions, Environ. Health Perspect., 115/6 (2007) 841847.
DOI: 10.1289/ehp.9797 E.M. Sunderland, R.P. Mason,
Human impacts on open ocean mercury concentrations, Global Biogeochem. Cycles, 21/4 (2007) GB4022.
DOI: 10.1029/2006GB002876
Reed C. Harris, John W. M. Rudd, Marc Amyot, Christopher L. Babiarz, Ken G. Beaty, Paul J. Blanchfield, R.A. Bodaly, Brian A. Branfireun, Cynthia C. Gilmour, Jennifer A. Graydon, Andrew Heyes, Holger Hintelmann, James P. Hurley, Carol A. Kelly, David P. Krabbenhoft, Steve E. Lindberg, Robert P. Mason, Michael J. Paterson, Cheryl L. Podemski, Art Robinson, Ken A. Sandilands, George R. Southworth, Vincent L. St. Louis, Michael T. Tat,
Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition, Proc. Natl. Acad. Sci., 104/42 (2007) 16586-91.
DOI: 10.1073/pnas.0704186104 Dariush Mozaffarian,
Fish Intake, Contaminants, and Human Health: Evaluating the Risks and the Benefits, JAMA, 296/15 (2007) 1885-1899.
DOI: 10.1001/jama.296.15.1885 E.M. Sunderland,
Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market, Environ. Health Perspect., 115/2 (2007) 235242.
DOI: 10.1289/ehp.9377Glenn Rice, James K. Hammitt,
Economic Valuation of Human Health Benefits of Controlling Mercury Emissions from U.S. Coal-Fired Power Plants, Northeast States for Coordinated Air Use Management, Febr. 2005. available from:
http://www.nescaum.org/documents/rpt050315mercuryhealth.pdf/ Leonardo Trasande, Philip J. Landrigan, Clyde Schechter,
Public Health and Economic Consequences of Methylmercury Toxicity to the Developing Brain, Environ. Health. Perspect., 113/5 (2005) 590-596.
DOI: 10.1289/ehp.7743 Jyrki K. Virtanen, Sari Voutilainen, Tiina H. Rissanen, Jaakko Mursu, Tomi-Pekka Tuomainen, Maarit J. Korhonen, Veli-Pekka Valkonen, Kari Seppänen, Jari A. Laukkanen, Jukka T. Salonen,
Mercury, Fish Oils, and Risk of Acute Coronary Events and Cardiovascular Disease, Coronary Heart Disease, and All-Cause Mortality in Men in Eastern Finland, Arterioscler Thromb Vasc Biol., 25 (2005) 228-233.
DOI: 10.1161/01.ATV.0000150040.20950.61