EVISA Print | Glossary on | Contact EVISA | Sitemap | Home   
 Advanced search
The establishment of EVISA is funded by the EU through the Fifth Framework Programme (G7RT- CT- 2002- 05112).

Supporters of EVISA includes:

Vaccine ingredient causes brain damage; some nutrients prevent it


Thimerosal (THIM), a organo-mercury compound containing the ethylmercury moiety, has been used as a preservative in liquid medicinal products, including pediatric vaccines, for decades without being adequately tested for safety in developping organisms. Despite its well known neurotoxicity, it is still used as a preservative in vaccines in many countries, including Canada and the US, especilly in multi-dose vials.  While the high neurotoxicity of organo-mercury compounds is well documented (see for example the literature cited below),  epidemiologic studies mainly failed to demonstrate a relationship between the use of the preservative and cases of injured people. Anyhow, vulnerable patients, such as pregnant women are often advised to ask for THI-free vaccines.

The new study:
Dr. Dorota Majewska of the Marie Curie Chairs Program at the Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology in Warsaw, Poland, and her colleagues showed that Thimerosal can cause brain damage by increasing the levels of glutamate. Glutamate is toxic to the brain and is one of the reasons THIM causes neurological diseases. Her research was published in the journal Neurochemical Research.

The researchers showed that repeated intramuscular injections of THIM on neonatal rats cause a long lasting increase of glutamate. Glutamate can cause damage because it produces oxidative stress, and lowers glutathione. Sulfur might protect against THIM damage. The nursing mother can try to boost her sulfur intake by using some high sulfur products such as garlic and onions. The authors conclude that their study provides further empirical evidence that exposure to THIM leads to neurotoxic changes in the developing brain, arguing for urgent and permanent removal of this preservative from all vaccines for children (and adults) since effective, less toxic and less costly alternatives are available.

The original study:

Michalina Duszczyk-Budhathoki, Mieszko Olczak, Malgorzata Lehner,  Maria Dorota Majewska,  Administration of Thimerosal to Infant Rats Increases Overflow of Glutamate and Aspartate in the Prefrontal Cortex: Protective Role of Dehydroepiandrosterone Sulfate, Neurochem. Res., 37 (2012) 436–447. DOI 10.1007/s11064-011-0630-z

Related studies (newest first)

J.G.  Dórea, Integrating experimental (in vitro and in vivo) neurotoxicity studies of low-dose thimerosal relevant to vaccines,  Neurochem. Res., 36 (2011) 927–938. doi: 10.1007/s11064-011-0427-0

M. Olczak, M. Duszczyk, P. Mierzejewski, K. Meyza. M.D. Majewska,  Persistent behavioral impairments and alterations of brain dopamine system after early postnatal administration of thimerosal in rats, Behav. Brain Res., 223 (2011) 107–118. doi: 10.1016/j.bbr.2011.04.026

M. Olczak, M. Duszczyk, P. Mierzejewski, T. Wierzba-Bobrowicz, M.D. Majewska, Lasting neuropathological changes in rat brain after intermittent neonatal administration of thimerosal, Folia Neuropathol., 48 (2010) 258–269.

M. Olczak, M. Duszczyk, P. Mierzejewski, T.  Bobrowicz, M.D. Majewska,  Neonatal administration of thimerosal causes persistent changes in mu opioid receptors in the rat brain, Neurochem. Res., 35 (2010) 1840–1847. doi: 10.1007/s11064-010-0250-z

C. Migdal, L. Foggia, M. Tailhardat, P. Courtellemont, M. Haftek, M. Serres, Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling, Toxicology, 274 (2010) 1–9. doi: 10.1016/j.tox.2010.04.016

E. Zieminska, B. Toczylowska, A. Stafiej, J.W. Lazarewicz, Low molecular weight thiols reduce thimerosal neurotoxicity in vitro: modulation by proteins, Toxicology, 276 (2010) 154–163. doi: 10.1016/j.tox.2010.07.023

L. Hewitson, L.A. Houser, C. Stott, G. Sackett, J.L. Tomko, D. Atwood, L. Blue, E.R. White, Delayed acquisition of neonatal reflexes in newborn primates receiving a thimerosal-containing hepatitis B vaccine: influence of gestational age and birth weight, J. Toxicol. Environ. Health A, 73 (2010) 1298–1313. doi: 10.1080/15287394.2010.484709

D.A. Geier, P.G. King, M.R. Geier, Mitochondrial dysfunction, impaired oxidative-reduction activity, degeneration, and death in human neuronal and fetal cells induced by low-level exposure to thimerosal and other metal compounds, Toxicol. Environ. Chem., 91 (2009) 735–749. doi: 10.1080/02772240802246458

T. Minami, E. Miyata, Y. Sakamoto, A. Kohama, H. Yamazaki, S. Ichida, Expression of metallothionein mRNAs on mouse cerebellum microglia cells by thimerosal and its metabolites, Toxicology, 261 (2009) 25–32. doi: 10.1016/j.tox.2009.04.037

M. Olczak, M. Duszczyk, P. Mierzejewski, M.D. Majewska, Neonatal administration of a vaccine preservative, thimerosal, produces lasting impairment of nociception and apparent activation of opioid system in rats, Brain Res., 1301 (2009) 143–151. doi: 10.1016/j.brainres.2009.09.003

H. Young, D. Geier, M. Geier, Thimerosal exposure in infants and neurodevelopmental disorders: an assessment of computerized medical records in the vaccine safety datalink, J. Neurol. Sci., 271 (2008) 110–118. doi: 10.1016/j.jns.2008.04.002

T.W. Clarkson, L. Magos, The toxicology of mercury and its chemical compounds, Crit. Rev. Toxicol., 36 (2006) 609–662. doi: 10.1080/10408440600845619

T.M. Burbacher, D.D. Shen, N. Liberato, K.S. Grant, E. Cernichiari, T. Clarkson, Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal,  Environ. Health Perspect., 113 (2005) 1015–1021. doi: 10.1289/ehp.7712

T. Ueha-Ishibashi, Y. Oyama, H. Nakao, C. Umebayashi, S. Hirama, Y. Sakai, S. Ishida, Y. Okano, Flow-cytometric analysis on cytotoxic effect of thimerosal, a preservative in vaccines, on lymphocytes dissociated from rat thymic glands, Toxicol. Vitro, 19 (2005) 191–198. doi: 10.1016/j.tiv.2004.07.004

L. Yel, L.E. Brown, K. Su, S. Gollapudi, S. Gupta, Thimerosal induces neuronal cell apoptosis by causing cytochrome c and apoptosis-inducing factor release from mitochondria, Int. J. Mol. Med., 16 (2005) 971–977.

J. Mutter, J. Naumann, R. Schneider, H. Walach, B. Haley, Mercury and autism: accelerating evidence?, Neuro Endocrinol. Lett., 26 (2005) 439–446. http://www.truthseekertimes.ca/database/text/Mercury%20and%20autism-%20Accelerating%20Evidence.pdf

M.L. Humphrey, M.P. Cole, J.C. Pendergrass, K.K. Kiningham, Mitochondrial mediated thimerosal-induced apoptosis in a human neuroblastoma cell line (SK-N-SH), Neurotoxicology, 26 (2005) 407–416. doi: 10.1016/j.neuro.2005.03.008

L. Mutkus, J.L. Aschner, T.  Syversen, G. Shanker, U. Sonnewald, M. Aschner, In vitro uptake of glutamate in GLAST- and GLT-1-transfected mutant CHO-K1 cells is inhibited by the ethylmercury-containing preservative thimerosal, Biol. Trace Elem. Res., 105 (2005) 71–86. doi: 10.1385/BTER:105:1-3:071

V.A. Fitsanakis, M. Aschner, The importance of glutamate, glycine, and gamma-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity, Toxicol. Appl. Pharmacol., 204 (2005) 343–354. doi: 10.1016/j.taap.2004.11.013

S.J. James, W. Slikker, S. Melnyk, E. New, M. Pogribna, S. Jernigan, Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors, Neurotoxicology, 26 (2005) 1–8. doi: 10.1016/j.neuro.2004.07.012

G.J. Harry, M.W. Harris, L.T. Burka, Mercury concentrations in brain and kidney following ethylmercury, methylmercury and Thimerosal administration to neonatal mice, Toxicol. Lett., 154 (2004) 183–189. doi: 10.1016/j.toxlet.2004.07.014

M. Hornig, D. Chian, W.I. Lipkin, Neurotoxic effects of postnatal thimerosal are mouse strain dependent, Mol. Psychiatry, 9 (2004) 833–845. doi: 10.1038/sj.mp.4001529

T. Ueha-Ishibashi, Y. Oyama, H. Nakao, C. Umebayashi, Y. Nishizaki, T. Tatsuishi, K. Iwase, K. Murao, H. Seo, Effect of thimerosal, a preservative in vaccines, on intracellular Ca2 + concentration of rat cerebellar neurons, Toxicology, 195 (2004) 77–84. doi: 10.1016/j.tox.2003.09.002

D.S. Baskin, H. Ngo, V.V. Didenko, Thimerosal induces DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblasts, Toxicol. Sci., 74 (2003) 361–368. doi: 10.1093/toxsci/kfg126

C. Sanfeliu, J. Sebastiŕ, R. Cristňfol, E.  Rodríguez-Farré, Neurotoxicity of organomercurial compounds, Neurotox. Res., 5 (2003) 283–305. doi: 10.1007/BF03033386

S. Makani, S. Gollapudi, L. Yel, S. Chiplunkar, S. Gupta, Biochemical and molecular basis of thimerosal-induced apoptosis in T cells: a major role of mitochondrial pathway, Genes Immun., 3 (2002) 270–278. doi: 10.1038/sj.gene.6363854

B.I. Juárez, M.L. Martínez, M. Montante, L. Dufour, E. García, M.E. Jiménez-Capdeville, Methylmercury increases glutamate extracellular levels in frontal cortex of awake rats, Neurotoxicol. Teratol., 24 (2002) 767–771. doi: 10.1016/S0892-0362(02)00270-2

K. Eto, A. Yasutake, T.  Kuwana, Y. Korogi, M. Akima, T. Shimozeki, H. Tokunaga, Y. Kaneko, Methylmercury poisoning in common marmosets–a study of selective vulnerability within the cerebral cortex, Toxicol. Pathol., 29 (2001) 565–573. doi: 10.1080/019262301317226375

K. Miyamoto, H. Nakanishi, S. Moriguchi, N. Fukuyama, K. Eto, J. Wakamiya, K. Murao, K. Arimura, M. Osame, Involvement of enhanced sensitivity of N-methyl-d-aspartate receptors in vulnerability of developing cortical neurons to methylmercury neurotoxicity, Brain Res., 901 (2001) 252–258. doi: 10.1016/S0006-8993(01)02281-8

J.W. Allen, L.A. Mutkus, M. Aschner, Mercuric chloride, but not methylmercury, inhibits glutamine synthetase activity in primary cultures of cortical astrocytes, Brain Res., 891 (2001) 148–157. doi: 10.1016/S0006-8993(00)03185-1

M. Aschner, C.P. Yao, J.W. Allen, K.H. Tan, Methylmercury alters glutamate transport in astrocytes, Neurochem. Int., 37 (2000) 199–206. doi: 10.1016/S0197-0186(00)00023-1

J. Albrecht, E. Matyja, Glutamate: a potential mediator of inorganic mercury neurotoxicity, Metab. Brain Dis., 11 (1996) 175–184. doi: 10.1007/BF02069504

J.E. Sirois, W.D. Atchison, Effects of mercurials on ligand- and voltage-gated ion channels: a review, Neurotoxicol., 17 (1996) 63–84

M.F. Denny, W.D. Atchison, Mercurial-induced alterations in neuronal divalent cation homeostasis, Neurotoxicol., 17 (1996) 47–61.

M.F. Denny, M.F. Hare, W.D. Atchison, Methylmercury alters intrasynaptosomal concentrations of endogenous polyvalent cations, Toxicol. Appl. Pharmacol., 122/2 (1993) 222-32. doi: 10.1006/taap.1993.1191

N. Brookes, D.A. Kristt, Inhibition of amino acid transport and protein synthesis by HgCl2 and methylmercury in astrocytes: selectivity and reversibility, J. Neurochem., 53 (1989) 1228–1237. doi: 10.1111/j.1471-4159.1989.tb07419.x

J.N. Reynolds, W.J. Racz, Effects of methylmercury on the spontaneous and potassium-evoked release of endogenous amino acids from mouse cerebellar slices, Can. J. Physiol. Pharmacol., 65 (1987) 791–798. doi: 10.1139/y87-127

L. Magos, A.W. Brown, S. Sparrow, E. Bailey, R.T. Snowden, W.R. Skipp, The comparative toxicology of ethyl- and methylmercury, Arch. Toxicol., 57 (1985) 260–267. doi: 10.1007/BF00324789

S. Szabo, M.J. Gagnon, The protective effect of sulfur-containing steroids against nephrocalcinosis induced by mercuric chloride in rats, Gen. Pharmacol., 14 (1983) 269–272. doi: 10.1016/0306-3623(83)90008-3

Related EVISA Resources

EVISA Link Database: Toxicity of organic mercury
 EVISA News about Thimerosal
 EVISA Advanced Search: All about Thimerosal

Related EVISA News

October 28, 2011: WHO worries mercury treaty could affect costs and availability of vaccines
August 15, 2011: New insights about interaction of thimerosal with blood components
August 8, 2011: UNEP Global Mercury Treaty May Include Ban on Mercury in Medicine
March 17, 2011: Researchers Urge the Removal of Mercury From Flu Shots
April 14, 2010: Unused swine flu vaccine turns into hazardous waste
March 31, 2010: Researcher Behind CDC Vaccine Safety Claims Disappears with $2M
September 24, 2009: Huge field experiment for assessing human ethylmercury risk starting in october
July 15, 2009: New Study Finds: Thimerosal Induces Autism-like Neurotoxicity
December 14, 2008: New study investigates the interaction of thimerosal with proteins
Januray, 12, 2008: New California study concludes that thimerosal seems not to be the major cause for autism
October 9, 2007: New CDC study on the effect of thimerosal exposure on neuropsychological characteristics of children is fueling the debate about the origin of autism
March 24, 2006: Mercury Containing Preservative Alters Immune Function
April 27, 2005: New results about toxicity of thimerosal
February 11, 2005: New findings about Thimerosal Neurotoxicity

last time modified: June 19,2012


Imprint     Disclaimer

© 2003 - 2024 by European Virtual Institute for Speciation Analysis ( EVISA )