EVISA Print | Glossary on | Contact EVISA | Sitemap | Home   
 Advanced search
The establishment of EVISA is funded by the EU through the Fifth Framework Programme (G7RT- CT- 2002- 05112).


Supporters of EVISA includes:

Mercury contaminated freshwater fish from the NE United States: Where does the mercury come from ?

(17.09.2019)


Background:
Many fish resources in  the NE USA are contaminated with mercury, making statewide, regional and water body specific consumption advisories necessary for preventing excessive human exposure to the toxic pollutant. The mercury content of fish is driven by many factors such as atmospheric deposition of mercury from regional emissions, such as coal-fired power plants, and other human activities such as waste incineration and cement production. Additionally, in urban regions, mercury from point source emissions and from legacy contamination can also contribute to Hg loads.

Once the mercury has reached the water-body, microbial transformation to methylmercury takes place, enhancing the transfer to the food chain and the uptake and bioaccumulation in fish. In order to understand the influence of different sources and mechanisms on the contamination  of fish, it is necessary to have information on the relative importance of the different sources for the contamination. To obtain such information is problematic, since relative contributions are not only dictated by pollution levels but also by different mercury species distribution and other local factors influencing their bioavailability, bioaccumulation and biomagnification.

The new study:

A group of researchers from the US Geological Survey now utilized the mercury isotope distribution to relate sources of Hg to co-located fish and bed sediments from 23 streams in the northeastern U.S. While the use of mercury isotope distribution as a source tracer has been used before, it is difficult to apply such approach across multiple water bodies that contain diverse land cover as well as mercury sources.

Source tracking is also complicated by reactions changing mercury speciation that imprint isotopic fractionation onto source signatures prior to bioaccumulation. Specifically, photodemethylation and photoreduction are such reactions known to create large shifts of the isotope signature. The researchers found that mass-dependent isotopes (δ202Hg) in prey and game fish were depleted at forested sites in comparison to urban-industrial settings. The Hg isotope signatures in fish were strongly related to in-stream and watershed land-use indicator variables. While fish isotopes were correlated with those in bed sediments, an isotopic offset between the two matrices was variable because of ecosystem-specific drivers controlling the formation of methylmercury and thereby bioaccumulation.


By using a multivariable approach including watershed characteristics and stream chemistry parameters, the researchers were able to link the Hg isotope composition in fish to current and historic Hg sources and demonstrated that the approach is able to trace bioaccumulated mercury.




The original publication:

Sarah E. Janssen, Karen Riva-Murray, John F. DeWild, Jacob M. Ogorek, Michael T. Tate, Chemical and Physical Controls on Mercury Source Signatures in Stream Fish from the Northeastern United States, Environ. Sci. Technol., 53 (2019) 10110−10119. DOI: 10.1021/acs.est.9b03394
 


Related studies

N. Roxanna Razavi, S.F. Cushman, J.D. Halfman, T. Massey, R. Beutner, L.B. Cleckner, Mercury bioaccumulation in stream food webs of the Finger lakes in central New York State, USA. Ecotoxicol. Environ. Saf., 172 (2019) 265−272. DOI: 10.1016/j.ecoenv.2019.01.060

D.A. Burns, K. Riva-Murray, Variation in fish mercury concentrations in streams of the Adirondack region, New York: A simplified screening approach using chemical metrics. Ecol. Indic., 84 (2018) 648−661. DOI: 10.1016/j.ecolind.2017.09.031

R. Lepak, R. Yin, S.E. Janssen, D.P. Krabbenhoft, J. Ogorek, J.J. DeWild, M.T. Tate, J.P. Hurley, Factors Affecting Mercury Stable Isotopic Distribution in Piscivorous Fish of the Great Lakes. Environ. Sci. Technol., 52/5 (2018) 2768−2776. DOI: 10.1021/acs.est.7b06120

J.D. Blum, M.W. Johnson, Recent developments in mercury stable isotope analysis. Rev. Mineral. Geochem., 82/1 (2017) 733−757. DOI: 10.2138/rmg.2017.82.17

D. Obrist, Y. Agnan, M. Jiskra, C.L. Olson, D.P. Colegrove, J. Hueber, C.W. Moore, J.E. Sonke, D. Helmig, Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature, 547/7662 (2017) 201−204. DOI: 10.1038/nature22997

R. Yin, X. Feng, J.P. Hurley, D.P. Krabbenhoft, R.F. Lepak, S. Kang, H. Yang, X. Li, Historical records of mercury stable isotopes in sediments of Tibetan Lakes. Sci. Rep., 6(2016) 23332. DOI: 10.1038/srep23332

X. Xu, Q. Zhang, W.-X. Wang, Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers. Sci. Rep., 6 (2016) 25394. DOI: 10.1038/srep25394

S.E. Janssen, J. Schaefer, T. Barkay, J.R. Reinfelder, Fractionation of mercury stable isotopes during microbial methylmercury production by iron- and sulfate- reducing bacteria. Environ. Sci. Technol., 50 (2016) 8077−8083. DOI: 10.1021/acs.est.6b00854

R. Yin, D.P. Krabbenhoft, B.A. Bergquist, W. Zheng, R.F. Lepak, J.P. Hurley, Effects of mercury and thallium concentrations on high precision determination of mercury isotopic composition by Neptune Plus multiple collector inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 31/10 (2016) 2060−2068. DOI: 10.1039/c6ja00107f

X. Fu, N. Marusczak, X. Wang, F. Gheusi, J.E. Sonke, Isotopic composition of gaseous elemental mercury in the free troposphere of the Pic du Midi observatory, France. Environ. Sci. Technol., 50/11 (2016) 5641−5650. DOI: 10.1021/acs.est.6b00033

J.G. Wiederhold, Metal stable isotope signatures as tracers in environmental geochemistry. Environ. Sci. Technol., 49/5 (2015) 2606−2624. DOI: 10.1021/es504683e

R. Lepak, R. Yin, D.P. Krabbenhoft, J.M. Ogorek, J.F. DeWild, T.M. Holsen, J.P. Hurley, Use of stable isotope signatures to determine mercury sources in the Great Lakes. Environ. Sci. Technol. Lett., 2/12 (2015) 335−341. DOI: 10.1021/acs.estlett.5b00277

V. Perrot, R. Bridou, Z. Pedrero, R. Guyoneaud, M. Monperrus, D. Amouroux, Identical Hg isotope mass dependent fractionation signature during methylation by sulfate-reducing bacteria in sulfate and sulfate-free environment. Environ. Sci. Technol., 49/3 (2015) 1365−1373. DOI: 10.1021/es5033376

J.D. Demers, L.S. Sherman, J.D. Blum, F.J. Marsik, J.T. Dvonch, Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urbanindustrial region near Pensacola, Florida, USA. Global Biogeochem. Cy., 29/10 (2015) 1689−1705. DOI: 10.1002/2015GB005146

M. Jiskra, J.G. Wiederhold, U. Skyllberg, R.-M. Kronberg, I. Hajdas, R. Kretzschmar, Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures. Environ. Sci. Technol., 49/12 (2015) 7188−7196. DOI: 10.1021/acs.est.5b00742

S.E. Janssen, M.W. Johnson, J.D. Blum, T. Barkay, J.R. Reinfelder, Separation of monomethylmercury from estuarine sediments for mercury isotope analysis. Chem. Geol., 411 (2015) 19−25. DOI: 10.1016/j.chemgeo.2015.06.017

R. Yin, X. Feng, X. Li, B. Yu, B. Du, Trends and advances in mercury stable isotopes as a geochemical tracer. Trends Environ. Anal. Chem., 2 (2014) 1−10. DOI: 10.1016/j.teac.2014.03.001

S.Y. Kwon, J.D. Blum, C.Y. Chen, D.E. Meattey, R.P. Mason, Mercury isotope study of sources and exposure pathways of methylmercury in estuarine food webs in the Northeastern U.S. Environ. Sci. Technol., 48/17 (2014) 10089−10097. DOI: 10.1021/es5020554

M.T. Tsui, J.D. Blum, J.C. Finlay, S.J. Balogh, Y.H. Nollet, W.J. Palen, M.E. Power, Variation in terrestrial and aquatic sources of methylmercury in stream predators as revealed by stable mercury isotopes. Environ. Sci. Technol., 48/17 (2014) 10128−35. DOI: 10.1021/es500517s

C.Y. Chen, M.E. Borsuk, D.M. Bugge, T. Hollweg, P.H. Balcom, D.M. Ward, J. Williams, R.P. Mason, Benthic and pelagic pathways of methylmercury bioaccumulation in estuarine food webs of the northeast United States. PLoS One, 9/2 (2014) e89305. DOI: 10.1371/journal.pone.0089305

A.T. Chalmers, D.P. Krabbenhoft, P.C. Van Metre, M.A. Nilles, Effects of urbanization on mercury deposition and accumulation in New England. Environ. Pollut., 192 (2014) 104−112. DOI: 10.1016/j.envpol.2014.05.003

M.T.K. Tsui, J.D. Blum, J.C. Finlay, S.J. Balogh, S.Y. Kwon, Y.H. Nollet, Photodegradation of methylmercury in stream ecosystems. Limnol. Oceanogr., 58/1 (2013) 13−22. DOI: 10.4319/lo.2013.58.1.0013

L.S. Sherman, J.D. Blum, Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA. Sci. Total Environ., 448 (2013) 163−175. DOI: 10.1016/j.scitotenv.2012.09.038

H. Hsu-Kim, K.H. Kucharzyk, T. Zhang, M.A. Deshusses, Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ. Sci. Technol., 47/6 (2013) 2441−2456. DOI: 10.1021/es304370g

J.D. Demers, J.D. Blum, D.R. Zak, Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochem. Cy., 27/1 (2013) 222−238. DOI: 10.1002/gbc.20021

J.G. Wiederhold, R.S. Smith, H. Siebner, A.D. Jew, G.E. Brown Jr., B. Bourdon, R. Kretzschmar, Mercury isotope signatures as tracers for Hg cycling at the New Idria Hg mine. Environ. Sci. Technol., 47/12 (2013) 6137−45. DOI: 10.1021/es305245z

J.D. Blum, B.N. Popp, J.C. Drazen, C. Anela Choy, M.W. Johnson, Methylmercury production below the mixed layer in the North Pacific Ocean. Nat. Geosci., 6/10 (2013) 879−884. DOI: 10.1038/ngeo1918

M. Mil-Homens, J. Blum, J. Canário, M. Caetano, A.M. Costa, S.M. Lebreiro, M. Trancoso, T. Richter, H. de Stigter, M. Johnson, V. Branco, R. Cesário, F. Mouro, M. Mateus, W. Boer, Z. Melo, Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin. Chem. Geol., 336 (2013) 62−71. DOI: 10.1016/j.chemgeo.2012.02.018

D. Foucher, H. Hintelmann, T.A. Al, K.T. MacQuarrie, Mercury isotope fractionation in waters and sediments of the Murray Brook mine watershed (New Brunswick, Canada): Tracing mercury contamination and transformation. Chem. Geol., 336 (2013) 87−95. DOI: 10.1016/j.chemgeo.2012.04.014

P.M. Donovan, J.D. Blum, D. Yee, G.E. Gehrke, M.B. Singer, An isotopic record of mercury in San Francisco Bay sediment. Chem. Geol., 349−350 (2013) 87−98. DOI: 10.1016/j.chemgeo.2013.04.017

S.Y. Kwon, J.D. Blum, M.A. Chirby, E.J. Chesney, Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments. Environ. Toxicol. Chem., 32/10 (2013) 2322−30. DOI: 10.1002/etc.2313

R. Wang, X.B. Feng, W.X. Wang, In Vivo Mercury Methylation and demethylation in freshwater tilapia quantified by mercury stable isotopes. Environ. Sci. Technol., 47/14 (2013) 7949−7957. DOI: 10.1021/es3043774

J. Huang, F.C. Chang, S. Wang, Y.J. Han, M. Castro, E. Miller, T.M. Holsen, Mercury wet deposition in the eastern United States: characteristics and scavenging ratios. Environ. Sci. Proc. Impact., 15/12 (2013) 2321−2328. DOI: 10.1039/c3em00454f

K. Hanley, W. Wollheim, J. Salisbury, T. Huntington, G.R. Aiken, Controls on dissolved organic carbon quantity and chemical character in temperate rivers of North America. Global Biogeochem. Cy., 27/2 (2013) 492−504.

J. Masbou, D Point, J.E. Sonke, Application of a selective extraction method for methylmercury compound specific stable isotope analysis (MeHg-CSIA) in biological materials. J. Anal. At. Spectrom., 28/10 (2013) 1620−1628. DOI: 10.1039/c3ja50185j

M.T. Tsui, J.D. Blum, S.Y. Kwon, J.C. Finlay, S.J. Balogh, Y.H. Nollet, Sources and transfers of methylmercury in adjacent river and forest food webs. Environ. Sci. Technol., 46/20 (2012) 10957−64. DOI: 10.1021/es3019836

J. Chen, H. Hintelmann, X. Feng, B. Dimock, Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim. Cosmochim. Acta, 90 (2012) 33−46. DOI: 10.1016/j.gca.2012.05.005

M. Jiskra, J.G. Wiederhold, B. Bourdon, R. Kretzschmar, Solution speciation controls mercury isotope fractionation of Hg(II) sorption to goethite. Environ. Sci. Technol., 46/12 (2012) 6654−62. DOI: 10.1021/es3008112

J. Liu, X. Feng, R. Yin, W. Zhu, Z. Li, Mercury distributions and mercury isotope signatures in sediments of Dongjiang, the Pearl River Delta, China. Chem. Geol. 287/1−2 (2011) 81−89. DOI: 10.1016/j.chemgeo.2011.06.001

G.E. Gehrke, J.D. Blum, M. Marvin-DiPasquale, Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes. Geochim. Cosmochim. Acta, 75/3 (2011) 691−705. DOI: 10.1016/j.gca.2010.11.012

G.E. Gehrke, J.D. Blum, D.G. Slotton, B.K. Greenfield, Mercury Isotopes Link Mercury in San Francisco Bay forage fish to surface sediments. Environ. Sci. Technol., 45/4 (2011) 1264−1270. DOI: 10.1021/es103053y

J.E. Sonke, J. Schäfer, J. Chmeleff, S. Audry, G. Blanc, B. Dupré, Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chem. Geol. 279/3−4 (2010) 90−100. DOI: 10.1016/j.chemgeo.2010.017

L.E. Gratz, G.J. Keeler, J.D. Blum, L.S. Sherman, Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air. Environ. Sci. Technol., 44/20 (2010) 7764−7770. DOI: 10.1021/es100383w

D.B. Senn, E.J. Chesney, J.D. Blum, M.S. Bank, A. Maage, J.P. Shine, Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the Northern Gulf of Mexico. Environ. Sci. Technol., 44/5 (2010) 1630−1637. DOI: 10.1021/es902361j

V. Perrot, V.N. Epov, M.V. Pastukhov, V.I. Grebenshchikova, C. Zouiten, J.E. Sonke, S. Husted, O.F.X. Donard, D. Amouroux, Tracing sources and bioaccumulation of mercury in fish of Lake Baikal− Angara River using Hg isotopic composition. Environ. Sci. Technol., 44/21 (2010) 8030−8037. DOI: 10.1021/es101898e

W. Zheng, H. Hintelmann, Isotope fractionation of mercury during Its photochemical reduction by low-molecular-weight organic compounds. J. Phys. Chem. A, 14/12 (2010) 4246−4253. DOI: 10.1021/jp9111348

L.C. Chasar, B.C. Scudder, A.R. Stewart, A.H. Bell, G.R. Aiken, Mercury cycling in stream ecosystems. 3. trophic dynamics and methylmercury bioaccumulation. Environ. Sci. Technol., 43/8 (2009) 2733−2739. DOI: 10.1021/es8027567

K. Kritee, T. Barkay, J.D. Blum, Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury. Geochim. Cosmochim. Acta, 73/5b (2009) 1285−1296. DOI: 10.1016/j.gca.2008.11.038

P. Selvendiran, C.T. Driscoll, M.R. Montesdeoca, J.T. Bushey, Inputs, storage, and transport of total and methyl mercury in two temperate forest wetlands. J. Geophys. Res.-Biogeo., 113/G2 (2008) G00C01. DOI: 10.1029/2008JG000739

J.D. Blum, B.A. Bergquist, Reporting of variations in the natural isotopic composition of mercury. Anal. Bioanal. Chem., 388 (2007) 353−359. DOI: 10.1007/s00216-007-1236-9

D.C. Evers, Y.-J. Han, C.T. Driscoll, N.C. Kamman, M.W. Goodale, K.F. Lambert, T.M.  Holsen, C.Y. Chen, T.A. Clair, T. Butler, Biological mercury hotspots in the Northeastern United States and Southeastern Canada. BioScience, 57/1 (2007) 29−43. DOI: 10.1641/B570107

C.T. Driscoll, Y.-J. Han, C.Y. Chen, D.C. Evers, K.F. Lambert, T.M. Holsen, N.C. Kamman, R.K. Munson, Mercury contamination in forest and freshwater ecosystems in the Northeastern United States. BioScience, 57/1 (2007) 17−28. DOI: 10.1641/B570106

B.A. Bergquist, J.D. Blum, Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318/5849 (2007) 417−420. DOI: 10.1126/science.1148050

N.E. Selin, D.J. Jacob, R.J. Park, R.M. Yantosca, S. Strode, L. Jaeglé, D. Jaffe, Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. J. Geophys. Res., 112/D2 (2007) D02308. DOI: 10.1029/2006JD007450

R.C. Harris, J.W.M. Rudd, M. Amyot, C.L. Babiarz, K.G. Beaty, P.J. Blanchfield, R.A. Bodaly, B.A. Branfireun, C.C. Gilmour, J.A. Graydon, A. Heyes, H. Hintelmann, J.P.  Hurley, C. Kelly, D.P. Krabbenhoft, S.E. Lindberg, R.P. Mason, M.J. Paterson, C.L. Podemski, A. Robinson, K.A. Sandilands, G.R. Southworth, V.L. St. Louis, M.T. Tate,  Whole-ecosystem study shows rapid fishmercury response to changes in mercury deposition. Proc. Natl. Acad. Sci. U. S. A., 104/42 (2007) 16586−16591. DOI: 10.1073/pnas.070418604

K. Kritee, J.D. Blum, M.W. Johnson, B.A. Bergquist, T. Barkay, Mercury stable isotope fractionation during reduction of Hg(II) to Hg(0) by mercury resistant microorganisms. Environ. Sci. Technol., 41/6 (2007) 1889−1895. DOI: 10.1021/es062019t

G.J. Keeler, M.S. Landis, G.A. Norris, E.M. Christianson, J.T. Dvonch, Sources of mercury wet deposition in eastern Ohio, USA. Environ. Sci. Technol., 40/19 (2006) 5874−5881. DOI: 10.1021/es060377q

J.G. Wiener, B.C. Knights, M.B. Sandheinrich, J.D. Jeremiason, M.E. Brigham, D.R. Engstrom, L.G. Woodruff, W.F. Cannon, S.J. Balogh, Mercury in soils, lakes, and fish in Voyageurs National Park (Minnesota): Importance of atmospheric deposition and
ecosystem factors.
Environ. Sci. Technol., 40/20 (2006) 6261−6268. DOI: 10.1021/es060822h

N.S. Bloom, On the chemical form of mercury in edible fish and marine invertebrate tissue. Can. J. Fish. Aquat. Sci., 49 (1992) 1010−1017. DOI: 10.1139/f92-113




Related EVISA News

January 21, 2011: Arctic Mercury Cycling May Be Linked to Ice Cover
June 28, 2010: New Study Examines Why Mercury is More Dangerous in Oceans
September 8, 2009: Inorganic Mercury Level in US Women increases
August 21, 2009: USGS Study Reveals Mercury Contamination in Fish Nationwide
May 3, 2009: Ocean mercury on the rise
February 11, 2009: Mercury in Fish is a Global Health Concern
March 11, 2007: Methylmercury contamination of fish warrants worldwide public warning
October 9, 2006: Linking atmospheric mercury to methylmercury in fish
February 9, 2006: Study show high levels of mercury in women related to fish consumption
January 12, 2005: Number of fish meals is a good predictor for the mercury found in hair of environmental journalists
April 27, 2004: FDA/EPA recommends pregnant women to restrict their fish consumption because of methylmercury content


last time modified: September 22, 2024



Comments






Imprint     Disclaimer

© 2003 - 2024 by European Virtual Institute for Speciation Analysis ( EVISA )