The concentration levels of different arsenic species in rice heavily depends on environmental conditions and to lesser extend on genotype of the rice plant plants. This is the result of a review of research on arsenic speciation in rice for the last 10 years.
Background:Rice contributes significantly to arsenic exposure of humans through the diet, because arsenic is mobilized from paddy field soils and accumulated by the rice plant. Arsenic speciation in the rice grain is dominated by inorganic arsenic and dimethylarsinic acid (DMA). MMA (monomethylarsonic acid) is occasionally detected in some samples but it is present only as a minor component. Interestingly, both the total concentration as well as the speciation of arsenic depends on many factors, such as plant genotype, soil type, water management and so on. Such relationships have been reviewed by a group of Chinese and UK researchers. Their review appeared recently in Environmental Science & Technology (see below).
The new review:
The authors investigated the global pattern of arsenic speciation in rice from different countries and the factors causing the variation. Rice produced in Asia shows a strong linear relationship between inorganic As and total arsenic concentration, with inorganic arsenic contributing to about 78 %.
The relationships between DMA and total As are linear for the rice produced in the three regions, but the slope decreases in the order of U.S.A. > European > Asian. In general, the iAs percentage tends to decrease, while the DMA percentage increases, with the total As concentration in the U.S.A. and European rice. These trends are not apparent in the Asian rice. Within the combined data set, the percentages of inorganic arsenic and DMA vary from 10 to 100% and from 0 to 90%, respectively.
Although there is significant variation of arsenic bioaccumulation with the genotype of the rice plant, the regional variations are primarily related to environmental factors. Because DMA can represent a substantial proportion of the total arsenic in rice grain, it is pertinent to ask where the methylated As species originate. There is growing evidence that methylated arsenic species are not generated by the rice plant itself, but by microorganisms in the soil. Although the microbial community responsible for methylation is only poorly understood, it is clear that culture conditions such as soil flooding and addition of organic matter increase the methylation of arsenic.
Plant roots are able to take up inorgnic arsenic as well as MMA and DMA, but the rates of uptake decrease with increasing number of methyl groups. In contrast to the decreasing uptake efficiency, the translocation from roots to shoots generally increases with the increasing number of methyl group in the arsenic compounds. Thus, a concentration ratio of DMA to inorganic arsenic in the soil solution of 1:5 could lead to equal proportions of the two arsenic species in rice grain. Different transport mechansism may also play a role for the different distribution of inorganic and methylated arsenic species within the rice grain.
Inorganic arsenic, especially arsenite, shows a strong accumulation on the surface of the grain, while DMA permeates readily into the endosperm. This difference explains why DMA is present at a greater proportion in polished rice (i.e., endosperm) than in the rice bran; the reverse is true for inorganic arssenic.
Implication for human health
Recent discussions on the potential health risk of arsenic in rice are based on the content of inorganic arsenic only, because there is scarce information with regard to the toxicology of methylated arsenic species. While early studies have shown already that methylated species are readily absorbed by humans across the gastrointestinal tract, they were also quickly excreated to a great percentage via the urine. DMA is a weak carcinogen, but the level of ingestion from rice consumption is much lower than that of concern.
At the end of their review, the authors highlight the open questions calling for further research:
1) What are the microorganisms responsible for arsenic methylation in the soil ?
2) What are the environmental factors controlling the methylation rate ?
3) Is volatilization of arsenic from the paddy field taking place to a significant extent ?
4) What are the genotype factors responsible for different arsenic speciation and accumulation ?
5) What is the reason for the efficient translocation of methylated species to the rice grain ?
The new review Fang-Jie Zhao, Yong-Guan Zhu, Andrew A. Meharg,
Methylated Arsenic
Species in Rice: Geographical Variation, Origin, and Uptake Mechanisms,
Environ. Sci. Technol., 47 (2013) 3957-3966.
doi: 10.1021/es304295n Related studies discussing:Analytical methodology for arsenic speciation analysis in rice Zhongwen Wang, Don Forsyth,
Methods for the Determination of Arsenic Speciation in Rice: A Review, in: R.A. Meyers, Encyclopedia of Analytical Chemistry, Wiley, 2012
J.-H. Huang, P. Fecher, G. Ilgen, K.-N. Hud, J. Yang,
Speciation of arsenite and arsenate in rice grain – Verification of nitric acid based extraction method and mass sample survey, Food Chem., 130 (2012) 453–459.
doi:10.1016/j.foodchem.2011.07.059 Tomohiro Narukawa, Akiharu Hioki, Koichi Chiba,
Speciation and Monitoring Test for Inorganic Arsenic in White Rice Flour, J. Agric.Food Chem., 60 (2012) 1122-1127.
doi: 10.1021/jf204240p Pradeep Alava, Tom Van de Wiele, Filip Tacka and Gijs Du Laing,
Extensive grinding and pressurized extraction with water are key points for effective and species preserving extraction of arsenic from rice, Anal. Methods, 4 (2012) 1237-1243.
doi: 10.1039/C2AY25094B Toni Llorente-Mirandes, Josep Calderón, José Fermín López-Sánchez, Francesc Centrich, and Roser Rubio,
A fully validated method for the determination of arsenic species in rice and infant cereal products, Pure Appl. Chem., 84 (2012) 225–238.
doi: 10.1351/PAC-CON-11-09-30 Nolan S. Horner,
Diane Beauchemin,
A simple method using on-line continuous leaching and ion exchange chromatography coupled to inductively coupled plasma mass spectrometry for the speciation analysis of bio-accessible arsenic in rice, Analytica Chimica Acta, 717 (2012) 1–6.
doi: 10.1016/j.aca.2011.12.049
M.B. de la Calle, H. Emteborg, T.P.J. Linsinger, R. Montoro,
J.J. Sloth, R. Rubio, M.J. Baxter,
J. Feldmann, P. Vermaercke, G. Raber,
Does the determination of inorganic arsenic in rice depend on the method?, Trends in Analytical Chemistry, 30 (2011) 641-651.
doi: 10.1016/j.trac.2010.11.015 T. Narakawa, K. Chiba,
Heat-Assisted Aqueous Extraction of Rice Flour for Arsenic Speciation Analysis, J. Agric. Food Chem., 58 (2010) 8183–8188.
DOI: 10.1021/jf101317n Jen-How Huang, Gunter Ilgen and Peter Fecher,
Quantitative chemical extraction for arsenic speciation in rice grains, J. Anal. At. Spectrom., 2010, 25, 800–802.
DOI: 10.1039/c002306j J.L. Guzman Mar, L. Hinojosa Reyes, G.M. Mizanur Rahman,
H.M. Skip Kingston,
Simultaneous Extraction of Arsenic and Selenium Species From Rice Products by Microwave-Assisted Enzymatic Extraction and Analysis by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry, J. Agric. Food Chem., 57 (2009) 3005–3013.
doi: 10.1021/jf803598k Arsenic speciation in rice from different regions of the world Francisco Burló, Amanda Ramírez-Gandolfo, Antonio J. Signes-Pastor, Parvez I. Haris, Angel A. Carbonell-Barrachina,
Arsenic Contents in Spanish Infant Rice, Pureed Infant Foods, and Rice, J. Food Sci., 71 (2012) T15.
doi: 10.1111/j.1750-3841.2011.02502.x Bruno L. Batista, Juliana M.O. Souza, Samuel S. De Souza, Fernando Barbosa,
Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption, J. Hazard. Mat., 191 (2011) 342–348.
doi: 10.1016/j.jhazmat.2011.04.087 Mireia Fontcuberta, Josep Calderon, Joan R. Villalbí, Francesc Centrich, Samuel Portana, Albert Espelt, Julia Duran, and Manel Nebot,
Total and Inorganic Arsenic in Marketed Food and Associated Health Risks for the Catalan (Spain) Population, J. Agric. Food Chem., 59 (2011) 10013–10022.
doi: 10.1021/jf2013502 Eureka E. Adomako, Paul N. Williams, Claire Deacon, Andrew A. Meharg,
Inorganic arsenic and trace elements in Ghanaian grain staples, Environ. Pollution, 159 (2011) 2435-2442.
doi: 10.1016/j.envpol.2011.06.031 Yangrong Fu, Mulong Chen, Xiangyang Bi, Yusheng He, Limin Ren, Wu Xiang, Shengying Qiao, Sen Yan, Zhonggen Li, Zhendong Ma,
Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China, Environ. Pollution, 159 (2011) 1757-1762.
doi:10.1016/j.envpol.2011.04.018 Feng Liang, Yulan Li, Guilin Zhang, Mingguang Tan, Jun Lin, Wei Liu, Yan Li, Wenwei Lu,
Total and speciated arsenic levels in rice from China, Food Additives & Contaminants: Part A, 27 (2010) 810—816.
DOI: 10.1080/19440041003636661 D.T. Heitkemper,
K.M. Kubachka, P.R. Halpin, M.N. Allen & N.V. Shockey,
Survey of total arsenic and arsenic speciation in US produced rice as a reference point for evaluating change and future trends, Food Additives and Contaminants: Part B: Surveillance, 2 (2009) 112-120.
doi: 10.1080/02652030903148298 Y.-G. Zhu, G.-X. Sun, M. Lei, M. Teng, Y.-X. Liu, N.-C. Chen, L.-H. Wang, A. M. Carey, C. Deacon, A. Raab, A.A. Meharg and P.N. Williams,
High Percentage Inorganic Arsenic Content of Mining Impacted and Nonimpacted Chinese Rice, Environ. Sci. Technol., 42 (2008) 5008–5013.
DOI: 10.1021/es8001103 Silvia Torres-Escribano, Mariana Leal, Dinoraz Vélez and Rosa Montoro,
Total and Inorganic Arsenic Concentrations in Rice Sold in Spain, Effect of Cooking, and Risk Assessments, Environ. Sci. Technol., 42 (2008) 3867–3872.
DOI: 10.1021/es071516m Andrew A. Meharg, Paul N. Williams, Eureka Adomako, Youssef Y. Lawgali, Claire Deacon, Antia Villada, Robert C.J. Cambell, Guoxin Sun, Yong-Guan Zhu,
Joerg Feldmann, Andrea Raab, Fang-Jie Zhao, Rafiqul Islam, Shahid Hossain and Junta Yanai,
Geographical Variation in Total and Inorganic Arsenic Content of Polished (White) Rice, Environ. Sci. Technol., 43 (2009) 1612–1617.
DOI: 10.1021/es802612a Yamily J. Zavala, Russell Gerads, Hakan Gürleyük and John M. Duxbury,
Arsenic in Rice: II. Arsenic Speciation in USA Grain and Implications for Human Health, Environ. Sci. Technol., 42 (2008) 3861–3866.
DOI: 10.1021/es702748q P.N. Williams, A. Raab,
J. Feldmann, and A.A. Meharg,
Market
Basket Survey Shows Elevated Levels of As in South Central U.S.
Processed Rice Compared to California: Consequences for Human Dietary
Exposure, Environ. Sci. Technol., 41 (2007) 2178–2183.
DOI: 10.1021/es061489k P.N. Williams, A.H. Price, A. Raab, S.A. Hossain,
J. Feldmann, and A.A. Meharg,
Variation in Arsenic Speciation and Concentration in Paddy Rice Related to Dietary Exposure, Environ. Sci. Technol., 39 (2005) 5531–5540.
DOI: 10.1021/es0502324 Transformation of arsenic species in the soil A. Abdul Ajees, Kavitha Marapakala, Charles Packianathan, Banumathi Sankaran, and Barry P. Rosen,
Structure of an As(III) S-Adenosylmethionine Methyltransferase: Insights into the Mechanism of Arsenic Biotransformation, Biochemistry, 51 (2012) 5476-5485.
doi: 10.1021/bi3004632 Jun Ye, Christopher Rensing, Barry P. Rosen, and Yong-Guan Zhu,
Arsenic
biomethylation by photosynthetic organisms, Trends Plant Sci., 17 (2012) 155-162.
doi: 10.1016/j.tplants.2011.12.003 Xiang-Yan Meng, Jie Qin, Li-Hong Wang, Gui-Lan Duan, Guo-Xin Sun, Hui-Lan Wu, Cheng-Cai Chu, Hong-Qing Ling, Barry P. Rosen, and Yong-Guan Zhu,
Arsenic biotransformation and volatilization in transgenic rice, New Phytol., 191 (2011) 49–56.
doi: 10.1111/j.1469-8137.2011.03743.x Xi-Xiang Yin, Jian Chen, Jie Qin, Guo-Xin Sun, Barry P. Rosen, and Yong-Guan Zhu,
Biotransformation and Volatilization of Arsenic by Three Photosynthetic Cyanobacteria, Plant Physiol., 156 (2011) 1631–1638.
doi: 10.1104/pp.111.178947 Adrien Mestrot,
Joerg Feldmann,
Eva M. Krupp, Mahmud S. Hossain, Gabriela Roman-Ross, and Andrew A. Meharg,
Field Fluxes and Speciation of Arsines Emanating from Soils, Environ. Sci. Technol., 45 (2011) 1798–1804.
DOI: 10.1021/es103463d Adrien Mestrot, M. Kalle Uroic, Thomas Plantevin, Md. Rafiqul Islam,
Eva M. Krupp,
Jörg Feldmann, Andrew A. Meharg,
Quantitative and Qualitative Trapping of Arsines Deployed to Assess Loss of Volatile Arsenic from Paddy Soil, Environ. Sci. Technol., 43 (2009) 8270–8275.
DOI: 10.1021/es9018755 Jie Qin, Corinne R. Lehr, Chungang Yuan, X. Chris Le, Timothy R. McDermott, and Barry P. Rosen,
Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga, PNAS, 106 (2009) 5213-5217.
doi: 10.1073/pnas.0900238106
X.Y. Xu, S.P. McGrath, and F. J. Zhao,
Rapid reduction of arsenate in the medium mediated by plant roots, New Phytologist, 176 (2007) 590–599.
doi: 10.1111/j.1469-8137.2007.02195.x W.J. Liu, Y.G. Zhu, Y. Hu, P.N. Williams, A.G. Gault, A.A. Meharg, J. M. Charnock, and F.A. Smith,
Arsenic Sequestration in Iron Plaque, Its Accumulation and Speciation in Mature Rice Plants (Oryza Sativa L.), Environ. Sci. Technol., 40 (2006) 5730–5736.
DOI: 10.1021/es060800v Ronald Bentley and Thomas G. Chasteen,
Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth, Microbiol. Mol. Biol. Rev., 66 (2002) 250–271. doi:
DOI: 10.1128/MMBR.66.2.250–271.2002 Suduan Gao and Richard G. Burau,
Environmental Factors Affecting Rates of Arsine Evolution from and Mineralization of Arsenicals in Soil, J. Environ. Qual., 26 (1997) 753-763. (
Link to abstract)
F. Challenger,
Biological Methylation, Chem. Rev., 36 (1945) 315-361.
doi: 10.1021/cr60115a003Plant uptake of arsenic from the soil and irrigation water Yan Jia, Hai Huang, Guo-Xin Sun, Fang-Jie Zhao, Yong-Guan Zhu,
Pathways and Relative Contributions to Arsenic Volatilization from Rice Plants and Paddy Soil, Environ. Sci. Technol., 46 (2012) 8090-8096.
doi: 10.1021/es300499a Wen-Ming Hsu, Hsing-Cheng Hsi, You-Tuan Huang, Chien-Sen Liao, Zeng-Yei Hseu,
Partitioning of arsenic in soil–crop systems irrigated using groundwater: A case study of rice paddy soils in southwestern Taiwan, Chemosphere, 86 (2012) 606–613.
doi: 10.1016/j.chemosphere.2011.10.029 Tomohito Arao, Akira Kawasaki, Koji Baba, and Shingo Matsumoto,
Effects of Arsenic Compound Amendment on Arsenic Speciation in Rice Grain, Environ. Sci. Technol., 45 (2011) 1291–1297.
DOI: 10.1021/es1033316 Fang-Jie Zhao, Steve P. McGrath, and Andrew A. Meharg,
Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism and Mitigation Strategies, Annu. Rev. Plant Biol. 2010. 61:535–59.
doi: 10.1146/annurev-arplant-042809-112152 F.J. Zhao, J.F. Ma, A.A. Meharg and S.P. McGrath,
Arsenic uptake and metabolism in plants, New Phytologist, 181 (2009) 777–794.
doi: 10.1111/j.1469-8137.2008.02716.x Ren-Ying Li, Yukiko Ago, Wen-Ju Liu, Namiki Mitani,
Jörg Feldmann, Steve P. McGrath, Jian Feng Ma, and Fang-Jie Zhao,
The Rice Aquaporin Lsi1 Mediates Uptake of Methylated Arsenic Species, Plant Physiology, 150 (2009) 2071–2080.
doi: 10.1104/pp.109.140350 Jian Feng Ma, Naoki Yamaji, Namiki Mitani, Xiao-Yan Xu, Yu-Hong Su, Steve P. McGrath, and Fang-Jie Zhao,
Transporters of arsenite in rice and their role in arsenic accumulation in rice grain, PNAS, 105 (2008) 9931–9935.
doi: 10.1073/pnas.0802361105 Mohammed Joinal Abedin,
Jörg Feldmann, and Andy A. Meharg,
Uptake Kinetics of Arsenic Species in Rice Plants, Plant Physiology, 128 (2002) 1120–1128.
doi: 10.1104/pp.010733 Md. Joinal Abedin, Malcolm S. Cresser, Andy A. Meharg,
Jörg Feldmann, and Janet Cotter-Howells,
Arsenic Accumulation and Metabolism in Rice (Oryza sativa L.), Environ. Sci. Technol., 36 (2001) 962–968.
DOI: 10.1021/es0101678
A.R. Marin, P.H. Masschleyn, and W.H. Patrick,
The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration, Plant and Soil, 139 (1992) 175-183.
doi: 10.1007/BF00009308Influence of environmental conditions on arsenic content in soil and its accumulation by the plant Gareth J. Norton, Eureka E. Adomako, Claire M. Deacon, Anne-Marie Carey, Adam H. Price, Andrew A. Meharg,
Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species, Environ. Poll., 177 (2013) 38- 47.
doi: 10.1016/j.envpol.2013.01.049 A.S.M.H.M. Talukder, C.A.Meisner, M.A.R.Sarkar, M.S.Islam, K.D. Sayre, J.M. Duxbury, J.G.Lauren,
Effect of water management, arsenic and phosphorus levels on rice in a high-arsenic soil–water system: II. Arsenic uptake, Ecotox. Environ. Safety, 80 (2012) 145–151.
doi:10.1016/j.ecoenv.2012.02.020 Anil C. Somenahally, Emily B. Hollister, Richard H. Loeppert, Wengui Yan, Terry J. Gentry,
Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application, Soil Biol. Biochem., 43 (2011) 1220-1228.
doi: 10.1016/j.soilbio.2011.02.011 Anil C. Somenahally, Emily B. Hollister, Wengui Yan, Terry J. Gentry, and Richard H. Loeppert,
Water Management Impacts on Arsenic Speciation and Iron-Reducing Bacteria in Contrasting Rice-Rhizosphere Compartments, Environ. Sci. Technol., 45 (2011) 8328–8335.
DOI: 10.1021/es2012403
Jacqueline L. Stroud, Gareth J. Norton, M. Rafiqul Islam, Tapash Dasgupta, Rodger P. White, Adam H. Price, Andrew A. Meharg, Steve P. McGrath, Fang-Jie Zhao,
The dynamics of arsenic in four paddy fields in the Bengal delta, Environ. Pollution, 159 (2011) 947-953.
doi: 10.1016/j.envpol.2010.12.016 Jacqueline L. Stroud, M. Asaduzzman Khan, Gareth J. Norton, M. Rafiqul Islam, Tapash Dasgupta, Yong-Guan Zhu, Adam H. Price, Andrew A. Meharg, Steve P. McGrath, and Fang-Jie Zhao,
Assessing the Labile Arsenic Pool in Contaminated Paddy Soils by Isotopic Dilution Techniques and Simple Extractions, Environ. Sci. Technol., 45 (2011) 4262–4269.
DOI: 10.1021/es104080s Paul N. Williams, Hao Zhang, William Davison, Andrew A. Meharg, Mahmud Hossain, Gareth J. Norton, Hugh Brammer, and M. Rafiqul Islam,
Organic Matter—Solid Phase Interactions Are Critical for Predicting Arsenic Release and Plant Uptake in Bangladesh Paddy Soils, Environ. Sci. Technol., 45 (2011) 6080–6087.
DOI: 10.1021/es2003765 Tushara R. Pillai, Wengui Yan, Hesham A. Agrama, William D. James, Amir M.H. Ibrahim, Anna M. McClung, Terry J. Gentry and Richard H. Loeppert,
Total Grain-Arsenic and Arsenic-Species Concentrations in Diverse Rice Cultivars under Flooded Conditions, Crop Sci., 50 (2010) 2065–2075.
doi: 10.2135/cropsci2009.10.0568 M. Asaduzzaman Khan, Jacqueline L. Stroud, Yong-Guan Zhu, Steve P. McGrath, and Fang-Jie Zhao,
Arsenic Bioavailability to Rice Is Elevated in Bangladeshi Paddy Soils, Environ. Sci. Technol., 44 (2010) 8515–8521.
DOI: 10.1021/es101952f Jessica Dittmar, Andreas Voegelin, Linda C. Roberts, Stephan J. Hug, Ganesh C. Saha, M. Ashraf Ali, A. Borhan M. Badruzzaman and Ruben Kretzschmar,
Arsenic Accumulation in a Paddy Field in Bangladesh: Seasonal Dynamics and Trends over a Three-Year Monitoring Period, Environ. Sci. Technol., 44 (2010) 2925–2931.
DOI: 10.1021/es903117r Linda C. Roberts, Stephan J. Hug, Jessica Dittmar, Andreas Voegelin, Ruben Kretzschmar, Bernhard Wehrli, Olaf A. Cirpka, Ganesh C. Saha, M. Ashraf Ali and A. Borhan M. Badruzzaman,
Arsenic release from paddy soils during monsoon flooding, Nat. Geosci., 3 (2010) 53-59.
doi: 10.1038/NGEO723 Tomohito Arao, Akira Kawasaki, Koji Baba, Shinsuke Mori and Shingo Matsumoto,
Effects of Water Management on Cadmium and Arsenic Accumulation and Dimethylarsinic Acid Concentrations in Japanese Rice, Environ. Sci. Technol., 43 (2009) 9361–9367.
DOI: 10.1021/es9022738 R.Y. Li, J.L. Stroud, J.F. Ma, S.P. McGrath and F.J. Zhao,
Mitigation of Arsenic Accumulation in Rice with Water Management and Silicon Fertilization, Environ. Sci. Technol., 43 (2009) 3778–3783.
DOI: 10.1021/es803643v X.Y. Xu, S.P. McGrath, A.A. Meharg and F.J. Zhao,
Growing Rice Aerobically Markedly Decreases Arsenic Accumulation, Environ. Sci. Technol., 42 (2008) 5574–5579.
DOI: 10.1021/es800324u Paul N. Williams, Antia Villada, Claire Deacon, Andrea Raab, Jordi Figuerola, Andrew J. Green,
Jörg Feldmann, and Andrew A. Meharg,
Greatly Enhanced Arsenic Shoot Assimilation in Rice Leads to Elevated Grain Levels Compared to Wheat and Barley, Environ. Sci. Technol., 41 (2007) 6854–6859.
DOI: 10.1021/es070627i Yoshio Takahashi, Reiko Minamikawa, Kéiko H. Hattori, Katsuaki Kurishima, Nobuharu Kihou, and Kouichi Yuita,
Arsenic Behavior in Paddy Fields during the Cycle of Flooded and Non-flooded Periods, Environ. Sci. Technol., 38 (2004) 1038–1044.
DOI: 10.1021/es034383n Patrick H. Masscheleyn, Ronald D. Delaune, and William H. Patrick,
Effect of Redox Potential and pH on Arsenic Speciation and Solubility in a Contaminated Soil, Envlron. Sci. Technol., 25 (1991) 1414-1419.
DOI: 10.1021/es00020a008Influence of the genotype of the rice plant on arsenic accumulation Gareth J. Norton, Shannon R. M. Pinson, Jill Alexander, Susan Mckay, Helle Hansen, Gui-Lan Duan, M. Rafiqul Islam, Shofiqul Islam, Jacqueline L. Stroud, Fang-Jie Zhao, Steve P. McGrath, Yong-Guan Zhu, Brett Lahner, Elena Yakubova, Mary Lou Guerinot, Lee Tarpley, Georgia C. Eizenga, David E. Salt, Andrew A. Meharg, Adam H. Price,
Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites, New Phytologist, 193 (2012) 650–664.
doi: 10.1111/j.1469-8137.2011.03983.x Chuan Wu, Zhihong Ye, Wensheng Shu, Yongguan Zhu and Minghung Wong,
Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes, J. Exp. Bot., 62 (2011) 2889-2898.
doi: 10.1093/jxb/erq462 Gareth J. Norton, Tapash Dasgupta, M. Rafiqul Islam, Shofiqul Islam, Claire M. Deacon, Fang-Jie Zhao, Jacqueline L. Stroud, Steve P. McGrath,
Joerg Feldmann, Adam H. Price, and Andrew A. Meharg,
Arsenic Influence on Genetic Variation in Grain Trace-Element Nutrient Content in Bengal Delta Grown Rice, Environ. Sci. Technol., 44 (2010) 8284–8288.
DOI: 10.1021/es101487x Gareth J. Norton, M. Rafiqul Islam, Claire M. Deacon, Fang-Jie Zhao, Jacqueline L. Stroud, Steve P. McGrath, Shofiqul Islam, M. Jahiruddin,
Joerg Feldmann, Adam H. Price and Andrew A. Meharg,
Identification of Low Inorganic and Total Grain Arsenic Rice Cultivars from Bangladesh, Environ. Sci. Technol., 43 (2009) 6070–6075.
DOI: 10.1021/es901121j Gareth J. Norton, Guilan Duan, Tapash Dasgupta, M. Rafiqul Islam, Ming Lei, Yongguan Zhu, Claire M. Deacon, Annette C. Moran, Shofiqul Islam, Fang-Jie Zhao , Jacqueline L. Stroud, Steve P. McGrath,
Joerg Feldmann, Adam H. Price and Andrew A. Meharg,
Environmental and Genetic Control of Arsenic Accumulation and Speciation in Rice Grain: Comparing a Range of Common Cultivars Grown in Contaminated Sites Across Bangladesh, China, and India, Environ. Sci. Technol., 43 (2009) 8381–8386.
DOI: 10.1021/es901844q Distribution of arsenic species in different parts of the rice plant Mao-Zhong Zheng, Gang Li, Guo-Xin Sun, Hojae Shim, Chao Cai,
Differential toxicity and accumulation of inorganic and methylated arsenic in rice, Plant Soil, 365 (2013) 227–238.
DOI: 10.1007/s11104-012-1376-3 Fang-Jie Zhao, Jacqueline L. Stroud, M. Asaduzzaman Khan, Steve P. McGrath,
Arsenic translocation in rice investigated using radioactive 73As tracer, Plant Soil, 350 (2012) 413–420.
DOI: 10.1007/s11104-011-0926-4 Katie L. Moore, Markus Schröder, Zhongchang Wu, Barry G.H. Martin, Chris R. Hawes, Steve P. McGrath, Malcolm J. Hawkesford, Jian Feng Ma, Fang-Jie Zhao, and Chris R.M. Grovenor,
High-Resolution Secondary Ion Mass Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice Roots, Plant Physiol., 156 (2011) 913–924.
doi: 10.1104/pp.111.173088 Gui-Lan Duan, Ying Hu, Wen-Ju Liu, Ralf Kneer, Fang-Jie Zhao, Yong-Guan Zhu,
Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain, Environ. Exp. Botany, 71 (2011) 416–421.
doi: 10.1016/j.envexpbot.2011.02.016 Katie L. Moore, Markus Schröder, Zhongchang Wu, Barry G.H. Martin, Chris R. Hawes, Steve P. McGrath, Malcolm J. Hawkesford, Jian Feng Ma, Fang-Jie Zhao, and Chris R.M. Grovenor,
High-Resolution Secondary Ion Mass Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice Roots, Plant Physiology, 156 (2011) 913–924.
doi: 10.1104/pp.111.173088
Mao-Zhong Zheng, Chao Cai, Ying Hu, Guo-Xin Sun, Paul N. Williams, Hao-Jie Cui, Gang Li, Fang-Jie Zhao, Yong-Guan Zhu,
Spatial distribution of arsenic and temporal variation of its concentration in rice, New Phytologist, 189 (2011) 200–209.
doi: 10.1111/j.1469-8137.2010.03456.x Anne-Marie Carey, Gareth J. Norton, Claire Deacon, Kirk G. Scheckel, Enzo Lombi, Tracy Punshon, Mary Lou Guerinot, Antonio Lanzirotti, Matt Newville, Yongseong Choi, Adam H. Price and Andrew A. Meharg,
Phloem transport of arsenic species from flag leaf to grain during grain filling, New Phytologist, 192 (2011) 87–98.
doi: 10.1111/j.1469-8137.2011.03789.x Helle R. Hansen, Andrea Raab, Adam H. Price, Guilan Duan, Yongguan Zhu, Gareth J. Norton,
Jörg Feldmann, Andrew A. Meharg,
Identification of tetramethylarsonium in rice grains with elevated arsenic content, J. Environ. Monit., 13 (2011) 32-34.
DOI: 10.1039/c0em00460j Anne-Marie Carey, Kirk G. Scheckel, Enzo Lombi, Matt Newville, Yongseong Choi, Gareth J. Norton, John M. Charnock,
Joerg Feldmann, Adam H. Price, and Andrew A. Meharg,
Grain Unloading of Arsenic Species in Rice, Plant Physiology, 152 (2010) 309–319.
doi: 10.1104/pp.109.146126 Katie L. Moore, Markus Schröder, Enzo Lombi, Fang-Jie Zhao, Steve P. McGrath, Malcolm J. Hawkesford, Peter R. Shewry and Chris R. M. Grovenor,
NanoSIMS analysis of arsenic and selenium in cereal grain, New Phytologist, 185 (2010) 434–445.
doi: 10.1111/j.1469-8137.2009.03071.x Gareth J. Norton, M. Rafiqul Islam, Guilan Duan, Ming Lei, Yongguan Zhu, Claire M. Deacon, Annette C. Moran, Shofiqul Islam, Fang-Jie Zhao, Jacqueline L. Stroud, Steve P. McGrath,
Joerg Feldmann, Adam H. Price and Andrew A. Meharg,
Arsenic Shoot-Grain Relationships in Field Grown Rice Cultivars, Environ. Sci. Technol., 44 (2010)1471–1477.
DOI: 10.1021/es902992d E. Lombi, K.G. Scheckel, J. Pallon, A.M. Carey, Y.G. Zhu and A.A. Meharg,
Speciation and distribution of arsenic and localization of nutrients in rice grains, New Phytologist, 184 (2009) 193–201.
doi: 10.1111/j.1469-8137.2009.02912.x Euan Smith, Ivan Kempson, Albert L. Juhasz, John Weber, William M. Skinner, Markus Gräfe,
Localization and speciation of arsenic and trace elements in rice tissues, Chemosphere 76 (2009) 529–535.
doi:10.1016/j.chemosphere.2009.03.010 Guo-Xin Sun, Paul N. Williams, Anne-Marie Carey, Yong-Guan Zhu, Claire Deacon, Andrea Raab,
Joerg Feldmann, Rafiqul M. Islam and Andrew A. Meharg,
Inorganic Arsenic in Rice Bran and Its Products Are an Order of Magnitude Higher than in Bulk Grain, Environ. Sci. Technol., 42 (2008) 7542–7546.
DOI: 10.1021/es801238pHuman exposure and health risk Diane Gilbert-Diamonda, Kathryn L. Cottinghama, Joann F. Grubera, Tracy Punshona, Vicki Sayarath, A. Jay Gandolfi, Emily R. Baker, Brian P. Jackson, Carol L. Folta, and Margaret R. Karagas,
Rice consumption contributes to arsenic exposure in US women, PNAS, 108(2011) 20656-660.
doi: 10.1073/pnas.1109127108 Gang Li, Guo-Xin Sun, Paul N. Williams, Luis Nunes, Yong-Guan Zhu,
Inorganic arsenic in Chinese food and its cancer risk, Environment International 37 (2011) 1219–1225.
doi: 10.1016/j.envint.2011.05.007
Tom Van de Wiele, Christina M. Gallawa, Kevin M. Kubachka, John T.
Creed, Nicholas Basta, Elizabeth A. Dayton, Shane Whitacre, Gijs Du
Laing, Karen Bradham, Arsenic Metabolism by Human Gut Microbiota upon in Vitro Digestion of Contaminated Soils, Environ. Health Perspect., 118/7 (2010) 1004-1009. doi:10.1289/ehp.0901794
Yong-Guan Zhu, Paul N. Williams, Andrew A. Meharg,
Exposure to inorganic arsenic from rice: A global health issue?, Environ. Pollution, 154 (2008) 169–171.
doi: 10.1016/j.envpol.2008.03.015 Debapriya Mondal, David A. Polya,
Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment, Appl. Geochem., 23 (2008) 2987–2998.
doi: 10.1016/j.apgeochem.2008.06.025 Molly L. Kile, E. Andres Houseman, Carrie V. Breton, Thomas Smith, Quazi Quamruzzaman, Mahmuder Rahman, Golam Mahiuddin, and David C. Christiani,
Dietary Arsenic Exposure in Bangladesh, Environ. Health Perspect., 115 (2007) 889–893.
doi: 10.1289/ehp.9462 Samuel M. Cohen, Takamasa Ohnishi, Lora L. Arnold,
X. Chris Le,
Arsenic-induced bladder cancer in an animal model, Toxicol. Appl. Pharmacol., 222 (2007) 258–263.
doi: 10.1016/j.taap.2006.10.010 Agency for Toxic Substances and Disease Registry,
Toxicological Profile for Arsenic, U.S. Department Of Health And Human Services: Atlanta, GA, 2007. [
web link]
Samuel M. Cohen and Lora L. Arnold, Michal Eldan, Ari S. Lewis and Barbara D. Beck,
Methylated Arsenicals: The Implications of Metabolism and Carcinogenicity Studies in Rodents to Human Risk Assessment, Crit. Rev. Toxicol., 36 (2006) 99–133.
DOI: 10.1080/10408440500534230 Albert L. Juhasz, Euan Smith, John Weber, Matthew Rees, Allan Rofe, Tim Kuchel, Lloyd Sansom, and Ravi Naidu,
In Vivo Assessment of Arsenic Bioavailability in Rice and Its Significance for Human Health Risk Assessment, Environ. Health Perspect., 114 (2006) 1826–1831.
doi: 10.1289/ehp.9322 Andrew A. Meharg and Md. Mazibur Rahman,
Arsenic Contamination of Bangladesh Paddy Field Soils: Implications for Rice Contribution to Arsenic Consumption, Environ. Sci. Technol., 37 (2003) 229–234.
DOI: 10.1021/es0259842
Samuel M. Cohen, Lora L. Arnold, Eva Uzvolgyi, Martin Cano, Margaret St. John, Shinji Yamamoto, Xiufen Lu,
X. Chris Le,
Possible Role of Dimethylarsinous Acid in Dimethylarsinic Acid-Induced Urothelial Toxicity and Regeneration in the Rat, Chem. Res. Toxicol. 2002, 15, 1150-1157.
doi: 10.1021/tx020026z Miroslav Styblo, Luz M. Del Razo, Libia Vega, Dori R. Germolec, Edward L. LeCluyse, Geraldine A. Hamilton, William Reed, Changqing Wang, William R. Cullen, David J. Thomas,
Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells, Arch. Toxicol., 74 (2000) 289-299.
doi: 10.1007/s002040000134 Jay S. Petrick, Felix Ayala-Fierro, William R. Cullen, Dean E. Carter, and H. Vasken Aposhian,
Monomethylarsonous Acid (MMAIII) Is More Toxic Than Arsenite in Chang Human Hepatocytes, Toxicol. Appl. Pharmacol., 163 (2000) 203–207.
doi: 10.1006/taap.1999.8872 Min Wei, Hideki Wanibuchi, Shinji Yamamoto, Wei Li and Shoji Fukushima,
Urinary bladder carcinogenicity of dimethylarsinic acid in male F344 rats, Carcinogenesis, 20 (1999) 1873-1876.
doi: 10.1093/carcin/20.9.1873 Erminio Marafante,
Marie Vahter, Harald Norin, Jeanette Envall, Margareta Sandström, Alexandros Christakopoulos, Ragnar Ryhage,
Biotransformation of Dimethylarsinic Acid in Mouse, Hamster and Man, J. Appl. Toxicol., 7(2) (1987) 111-117.
doi: 10.1002/jat.2550070207 J.P. Buchet, R. Lauwerys, and H. Roels,
Comparison of the Urinary Excretion of Arsenic Metabolites After a Single Oral Dose of Sodium Arsenite, Monomethylarsonate, or Dimethylarsinate in Man, Int. Arch. Occup. Environ. Health, 48 (1981) 71-79.
doi: 10.1007/BF00405933 Related EVISA resources Link database: Toxicity of arsenic compounds Link database: Human arsenic exposure via the diet Link database: Arsenic cycle in the environment Brief summary: LC-ICP-MS - The most often used hyphenated system for speciation analysis Related EVISA News February 15, 2013: JRC-IRMM has released ERM-BC211 certified rice reference material for arsenic speciation analysis September 21, 2012: Arsenic in Rice : First results from the U.S. Food and Drug Administration January 4, 2011: Arsenic species in rice: Call for analytical laboratories August 2, 2010: Gut bacteria transform inorganic arsenate leading to more toxic arsenic species May 19, 2010: China: Inorganic Arsenic in Rice - An Underestimated Health Threat ? February 23, 2010: US EPA opens inorganic arsenic cancer assessment for public review December 4, 2009: EFSA: Scientific Opinion on Arsenic in Food May 26, 2009: UK Food Standards Agency releases research on arsenic in rice milk January 31, 2009: Using the right recipe for cooking rice reduces toxic inorganic arsenic content November 11, 2008: EFSA calls for data on arsenic levels in food and water
September 5, 2008: Exposure to inorganic arsenic may increase diabetes risk March 15, 2008: Arsenic in rice milk exceeds EU and US drinking water standards February 15, 2008: Arsenic speciation in rice: a question of the rice plant species March 7, 2007: Elevated Arsenic Levels Found In Rice Grown In South Central States of the USA August 3, 2005: Surprisingly high concentrations of toxic arsenic species found in U.S. rice May
15, 2005: Use of organoarsenicals as pesticides may lead to
contamination of soils and groundwater with toxic arsenic specieslast time modified: July 22, 2020